Binaural Hearing for Robots

Methodological Foundations

Binaural Hearing for Robots

- 1. Introduction to Robot Hearing
- 2. Methodological Foundations
- 3. Sound-Source Localization
- 4. Machine Learning and Binaural Hearing
- 5. Fusion of Audio and Vision


2. Methodological Foundations

- 1. Robot heads and acoustic laboratories
- 2. Binaural Processing Pipeline
- 3. Continuous-time Fourier transform
- 4. Continuous short-time Fourier transform
- 5. Discrete-time signals
- 6. Discrete short-time Fourier transform
- 7. Spectrogram of an acoustic signal
- 8. Cross-correlation
- 9. Relative transfer function
- 10. Binaural features

2. Methodological Foundations

- 1. Robot heads and acoustic laboratories
- 2. Binaural Processing Pipeline
- 3. Continuous-time Fourier transform
- 4. Continuous short-time Fourier transform
- 5. Discrete-time signals
- 6. Discrete short-time Fourier transform
- 7. Spectrogram of an acoustic signal
- 8. Cross-correlation
- 9. Relative transfer function
- Binaural features

Robot Heads

Acoustic Dummy Heads

Acoustic Head and Torso

Audio-Visual Robot Heads

Binaural & binocular heads mounted onto a pan-tilt device

Sound Sources

Sound sources: loudspeaker & people

An Acoustic Laboratory

Acoustic laboratory at Bar Ilan University

Anechoic Laboratories

Anechoic laboratories allow advanced acoustic experiments

Session Summary

- Robot heads
- Acoustic heads
- Acoustic laboratories
- Anechoic rooms