

Accès aux vidéos en ligne : comment repousser les limites des tuyaux ?

vincent.roca@inria.fr

25 avril 2012

Copyright © Inria 2012, tous droits réservés

Ocontributeur: Vincent Roca

distribué sous licence Creative Commons

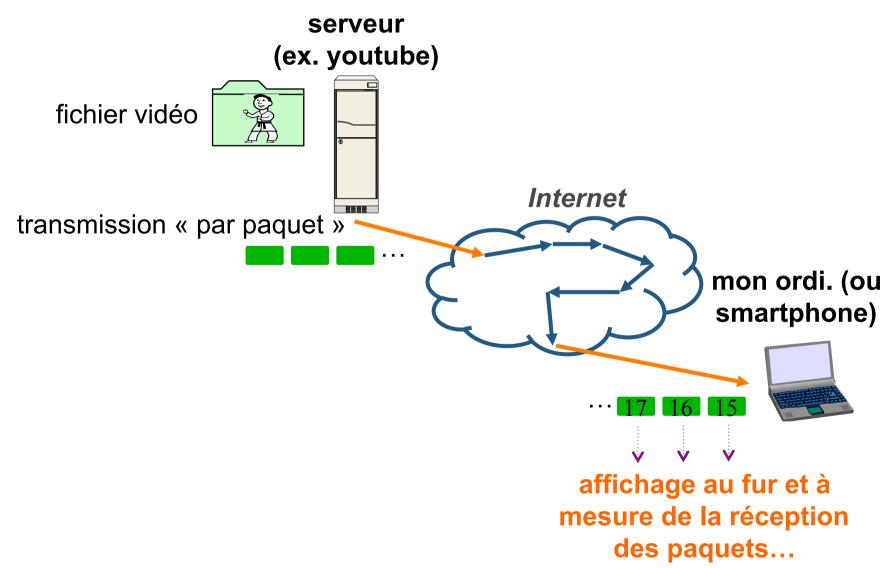
Paternité - Pas d'Utilisation Commerciale 2.0 France (CC BY-NC 2.0)

http://creativecommons.org/licenses/by-nc/2.0/fr/deed.fr

Plan

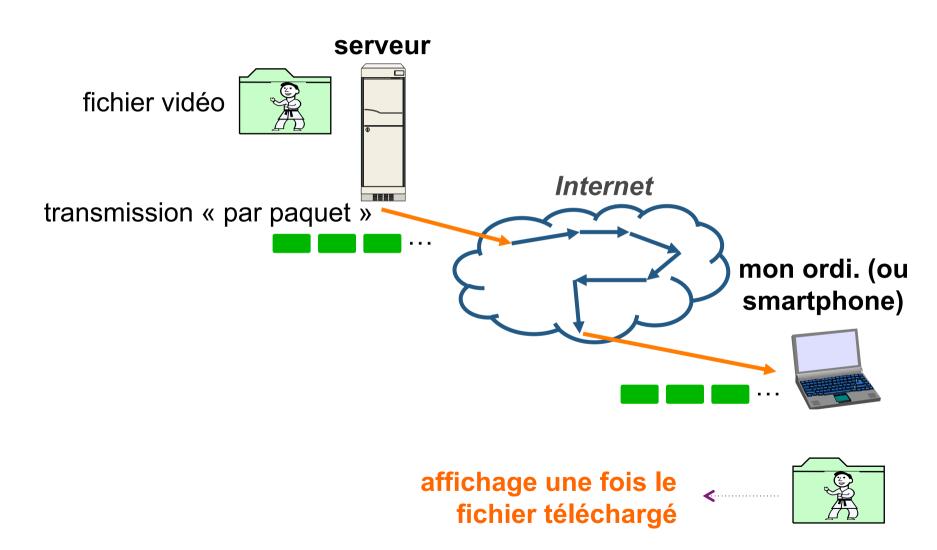
- 1. Introduction et contexte
- 2. Pourquoi et comment coder une vidéo numérique ?
- 3. Comment diffuser et accéder à une vidéo ?
- 4. Un exemple : le standard ISDB-Tmm

1ère partie


Introduction et contexte

Un peu de vocabulaire

- VOD
 - vidéo à la demande (« Video On Demand »)
 - l'utilisateur choisit son contenu, au lieu de « subir » les programmes choisis pour lui par les chaînes TV
- SVOD
 - OVOD avec abonnement (« Subscription VOD »)
- mode « streaming »
 - Olecture en continu de la vidéo/musique/...
- mode « téléchargement » (download)
 - on télécharge la totalité, puis on lit la vidéo/musique/...


Un peu de vocabulaire... (suite)

transmission en mode « streaming » ?

Un peu de vocabulaire... (suite)

ou transmission en mode « téléchargement » ?

Un peu de vocabulaire... (suite)

comparaison

mode streaming	téléchargement
on visionne rapidement	on attend la fin de réception du (gros) fichier
utilisable même si l'on n'a que peu d'espace de stockage libre	nécessite un espace de stockage suffisant
on peut zapper	zapper nécessite d'avoir téléchargé les deux fichiers Bof!
la qualité dépend du réseau, qui varie dynamiquement	qualité optimale
visionner plusieurs fois nécessite plusieurs transmissions	on visionne autant de fois que voulu sans surcoût

Quelques statistiques pour fixer les idées...

- YouTube, c'est :
 - O8 ans de contenu mis en ligne chaque jour
 - Osoit 48h par minute
 - 3 milliards de vidéos regardées par jour
 - Odont > 400 millions pour YouTube Mobile par jour
 - > 700 milliards de vidéos regardés sur l'année 2010
 - ○800 millions d'utilisateurs uniques par mois
 - Oen France :
 - **○39.6%** de part de marché
 - **○214** min/mois de visionnage en moyenne
- source : http://www.youtube.com/t/press statistics


Dailymotion

- DailyMotion, c'est :
 - 1,2 milliards de vidéos regardées par mois
 - 114 millions de visiteurs uniques par mois
 - Oen France :
 - **○2,7% de part de marché**
 - **○82 min/mois de visionnage en moyenne**

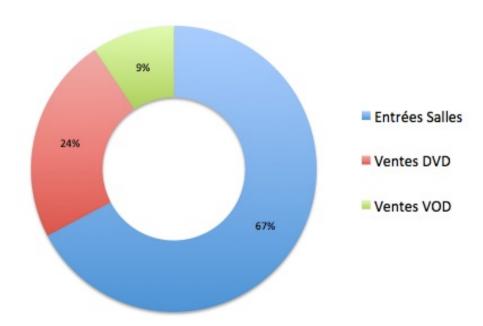
source : http://www.dailymotion.com/fr/about

leader US de la vidéo à la demande par abonnement

- évolution de l'offre au cours du temps
 - Ode l'envoi de cassettes VHS/DVD par courrier...

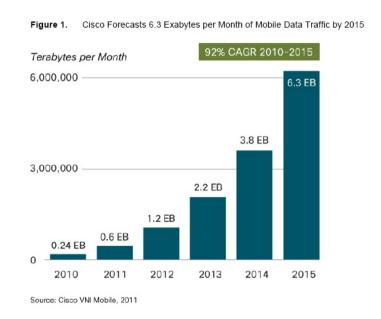
- ... au streaming sur Internet
 - Opour 7.99\$/mois, accès illimité aux films/séries en streaming
 - Orecommandation : 1.5 Mb/s min, 3 Mb/s en qualité DVD
 - facilement accessible avec un accès ADSL

- Netflix, aux US, c'est :
 - 22 millions d'abonnements avec streaming
 - **O3 millions d'abonnements DVD seuls**



- ○20% du trafic Internet aux heures de pointe (2010)
 - Ocela va augmenter inévitablement...

- « La VOD redonne le sourire à l'industrie du cinéma »
 - OZDNet, 13 février 2012
 - Ole poids de la VOD dans le chiffre d'affaire d'un film augmente...
 - Oexemple « Bridesmaids »:
 - 9% (40 Millions \$) du CA réalisé sur l'offre VOD aux US



Et le réseau là dedans ?

« Le trafic de données mobile est aujourd'hui **trois fois plus important** que tout le trafic Internet en 2000. Il devrait bondir de **26 fois** entre 2010 et 2015, pour atteindre 6,3 exaoctets (10¹⁸) par mois. Rien qu'en 2010, il a triplé.

La vidéo sur mobile devrait être le principal consommateur de bande passante : il représente déjà 50% de tous le trafic data mobile observé... »

Oles opérateurs misent sur la disponibilité de nouveaux réseaux pour mobiles (amélioration avec 3G+, puis 4G/LTE)

source : ZDNet, 1er février 2011

En résumé...

on a vu... Odifférences entre les « modes streaming » et « téléchargement » de diffusion de contenus importance croissante de : offre VOD **○YouTube ONetflix** offre SVOD O« la VOD, une chance pour l'industrie du cinéma » impacts sur le réseau ONetflix: 20% du trafic Internet en heures de pointe! Opréoccupant pour « l'Internet mobile »

course vers les réseaux 3G+ et 4G

2ème partie

Aspects techniques

 pourquoi et comment coder une vidéo numérique ?

Pourquoi compresser une vidéo ?

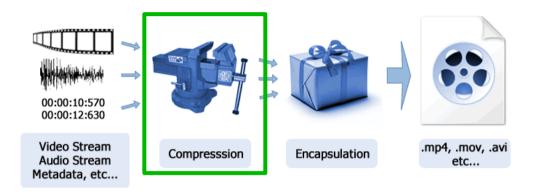
vidéo

○25 ou 30 images/s pour une bonne illusion de mouvement

 une vidéo non compressée (les images sont indépendantes les unes des autres) a une taille prohibitive

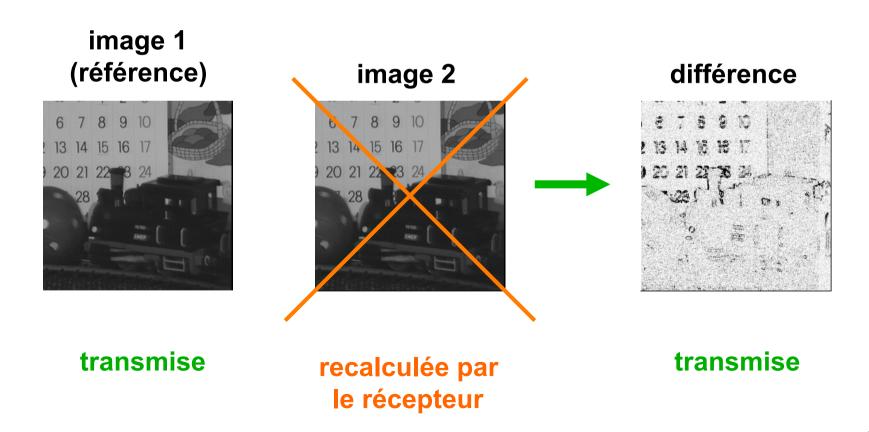
Oexemple :

O1H de vidéo, format 1024x768, 25 image/s, 32 bits/pixel

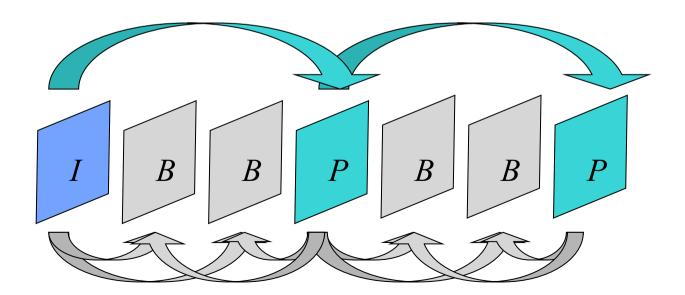

Ofichier de 283 GO, streaming à 629 Mb/s

• NB: ADSL-2 ⇒ 18 Mb/s max

Ocoûts de stockage prohibitifs


Ocoûts de transmission prohibitifs

Comment compresser une vidéo ?

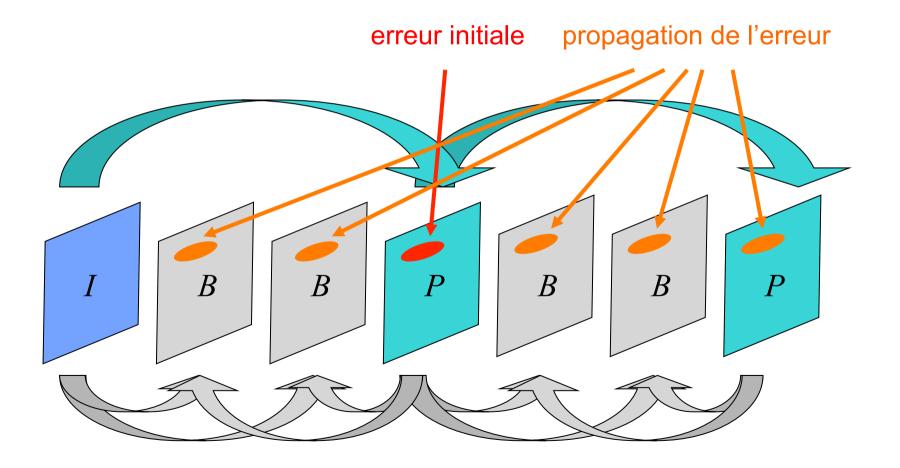


- la compression vidéo est « à perte »
 - il y a dégradation de qualité par rapport à l'original
 - Ochallenge : limiter cette dégradation !
 - Otechnique 1 (compression spatiale):
 - Oon triche en retirant d'une image les informations que l'œil distingue mal
 - on est plus sensible à la luminance qu'à la chrominance
 - Opermet une réduction de taille significative...
 - O... sans trop dégrader la qualité perçue

- technique 2 (compression temporelle) :
 - On ne transmet pas deux fois les mêmes informations
 - Odeux images successives étant voisines, on transmet la 1^{ère}, puis la différence 2^{ème} 1^{ère} et ainsi de suite...

- on utilise les 2 techniques conjointement (MPEG)
 - Ochaque image est compressée
 - On code les différences entre images en respectant une hiérarchie I, P, B
 - I intra (image complète)
 - P prédite: différence avec la trame I ou P précédente
 - B prédite dans les deux sens: différence avec les trames I et P les plus proches

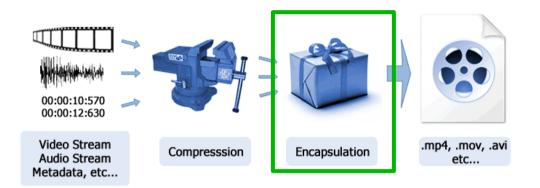
- de multiples évolutions...
 - Overs une meilleure compression à qualité égale
 - on réduit le « poids » de la vidéo (taille en octets)
 - Overs de plus hautes définitions à « poids » égale
 - on améliore la qualité perçue avec la HD (1920x1080)
 - autour de 5 Mb/s
 - Overs la 3D


De la théorie à la pratique

- on ne peut pas toujours compresser
 - Ocar cela exige une puissance de calcul importante, pas toujours compatible avec un fonctionnement en temps-réel
 - Oexemple : format DV/HDV des caméscopes numériques
 - chaque image est indépendante
- on ne veut pas toujours compresser
 - Opour avoir une qualité optimale et pouvoir éditer facilement la vidéo lors du montage
 - Oexemple: format MJPEG2000 du cinéma HD
 - la vidéo est une succession d'images indépendantes au format JPEG2000 (avec ou sans pertes)

De la théorie à la pratique... (suite)

compresser n'est pas toujours bénéfique


Oavec un compression MPEG, les erreurs sont propagées au sein du GOP (group of pictures)

De la théorie à la pratique... (suite)

Pour limiter les problèmes on va utiliser :

- Ocodage robuste aux erreurs
 - Oexemple : on ajoute des points de synchronisation dans le flux
- Otechniques de masquage d'erreurs
 - Ole décodeur estime l'information manquante
 - en réutilisant des informations d'images précédentes
 - au sein d'une image par estimation de la zone manquante

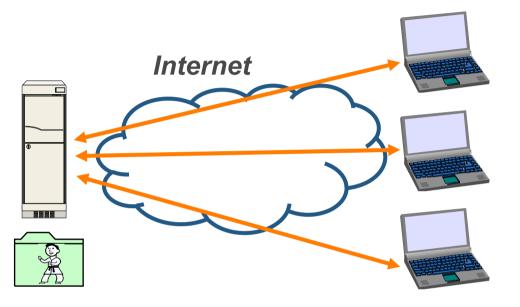
- à la compression s'ajoute le type de « conteneur »
 - Orassemble en un seul fichier le(s) flux vidéo(s), audio(s), sous-titrage(s), méta-données, etc.

Oexemple:

- .mpg (MPEG1/2/4, MPEG), .mov (QuickTime, Apple), .flv (Flash, Adobe), .webm (webm, Google), .avi (Microsoft), .rm (RealMedia, RealNetworks)
- Osource de confusion, complexité et incompatibilités !

En résumé...

- on a vu...
 - Onécessité de compresser
 - **Opour stocker**
 - **Opour transmettre**
 - Ocompression vidéo = ne conserver que l'information la plus importante visuellement, et ne pas transmettre deux fois des informations proches
 - Ola compression « intra » est pratique, facilite l'édition et rend le flux robuste... au prix d'une compression moindre
 - One pas confondre standard de compression vidéo et type conteneur

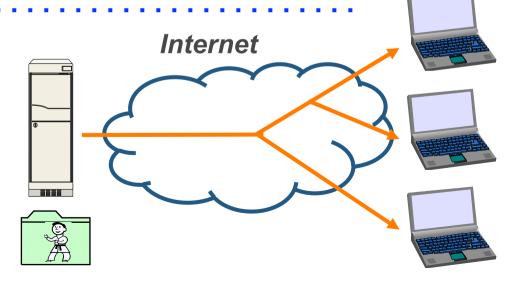

3ème partie

Aspects techniques

- comment diffuser et accéder à une vidéo ?
 - 1. mode de transmission
 - 2. bufferisation
 - 3. pertes
 - 4. gros plan sur les codes LDPC-Staircase
 - 5. gros plan sur FECFRAME

1- Point à point ou multipoints ?

comment sont diffusés les contenus ?

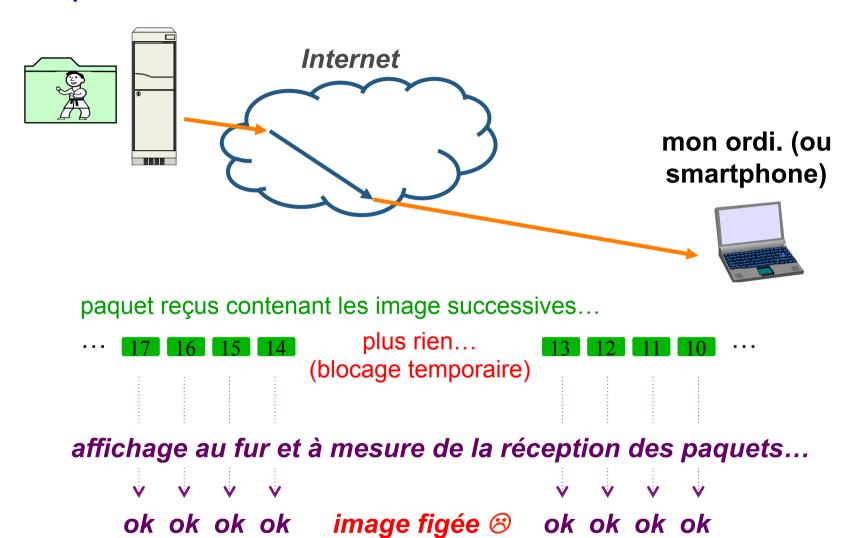


Point à point : $n \times (1 \Leftrightarrow 1)$

autant de connexions et de transmissions qu'il y a de clients

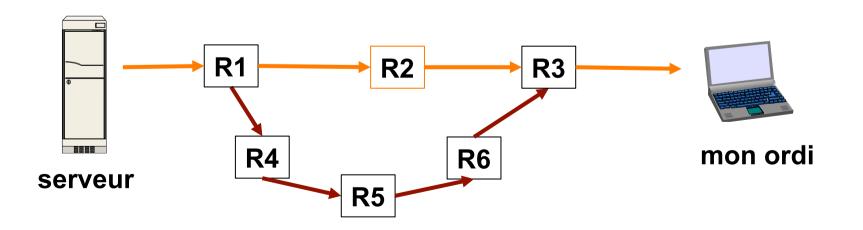
Multipoints : 1 ⇒ n

un paquet est **transmis une fois** puis répliqué et
acheminé par le réseau
comme il se doit.



Point à point ou multipoints... (suite)

- le choix dépend de l'usage
 - Ochaque client choisit à tout moment dans un catalogue important
 - ⇒ point à point
 - Odiffusion simultanée du même contenu à un grand nombre
 - **⇒** multipoints
 - Oseule l'approche multipoints passe à l'échelle
 - c'est à dire supporte un nombre de clients très élevé
- Questions :
 - Oqu'utilise t-on pour le service VOD / YouTube ?
 - Oqu'utilise t-on pour le service TV sur ADSL ?


2- Bufferiser est nécessaire au streaming!

le problème...

 question : pourquoi les délais d'acheminement sur Internet ne sont ils pas stables ?

- plusieurs raisons :
 - Osur un câble unique donné, le délai varie peu... sauf si un grand nombre de stations veulent y accéder simultanément!
 - O... mais sur Internet, le délai dépend de l'état d'encombrement des routeurs traversés qui varie dynamiquement et fortement
 - O... mais aussi du chemin suivi qui peut changer en cours de route

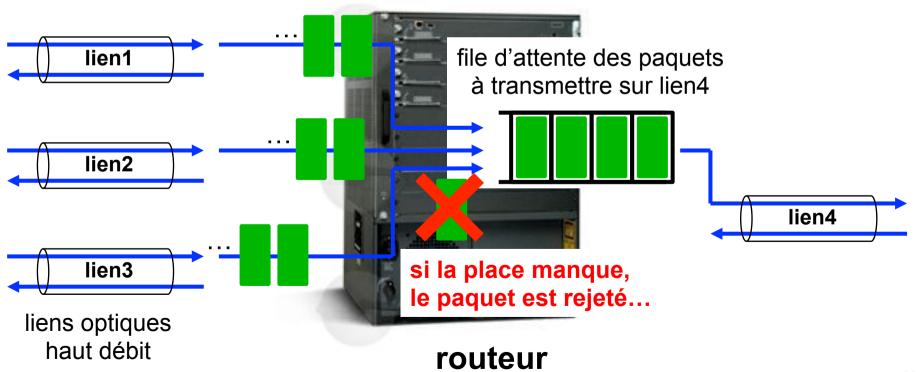
- plusieurs raisons (suite) :
 - O... enfin, si la solution de streaming repose sur TCP (souvent le cas), les retransmissions TCP en cas de perte posent problème...
 - cf plus loin le « recouvrement sur erreurs TCP »

- bufferiser est nécessaire pour éviter la famine
- en pratique...
 - Ole client impose un délai avant de démarrer l'affichage
 - Ole client stocke des données d'avance pendant ce temps
 - Oc'est la « bufferisation »
 - Ole buffer est ensuite consommé
 - Opour l'affichage vidéo
 - Oet **renouvelé** en permanence
 - Oavec l'arrivée de nouveaux paquets

paquet reçus du réseau... fille d'attente (ou buffer)

le buffer est visualisé dans la barre de lecture

Osi la « zone grisée » disparaît, l'image se fige (il n'y a plus de données disponibles à afficher !)


3- Quid des pertes?

question : peut-il y avoir des pertes sur Internet et pourquoi ?

« To be lost or not to be lost »

Quid des pertes... (suite)

- malheureusement oui, essentiellement dues à la présence d'un routeur congestionné
 - Otrop de trafic entrant pour le même lien de sortie
 - Ola file d'attente déborde... et des paquets perdus

Quid des pertes... (suite)

- on fait quoi ?
- cas 1 (simple): transmission point à point
 - Ole client informe le serveur et demande une retransmission
 - Ole protocole TCP fait cela très bien, tout seul...
 - Orésolu ©
- TCP, clef de voute de l'Internet (avec IPv4/IPv6)
- service de transmission fiable et ordonné

pas d'ACK (reçu<2000)

ACK (reçu<2000)

ACK (reçu<3000)

ACK (reçu<3000)

ACK (reçu<3000)

données [1000, 1999]

Quid des pertes... (suite)

- cas 2 : transmission multipoints
 - Oil faut trouver autre chose si le nombre de clients est >> 1
 - imaginez un serveur qui reçoit 1 million de requêtes de retransmission simultanément !
- technique : on ajoute de la redondance au flux
 - Ola redondance permet de récupérer une ou plusieurs pertes
 - Onotion de « code correcteur d'effacement » (FEC)
 - Ole même paquet de redondance permet de corriger une perte différente chez des récepteurs différents ©
- exemple :

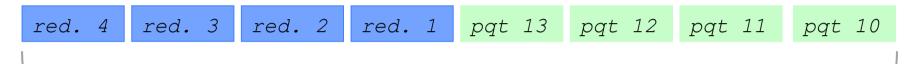
On reconstruit p13 par : p13 = somme(p12,p13) - p12

Contre les pertes, des codes FEC

- en pratique...
 - Oc'est une « somme » au sens de l'opérateur binaire XOR

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

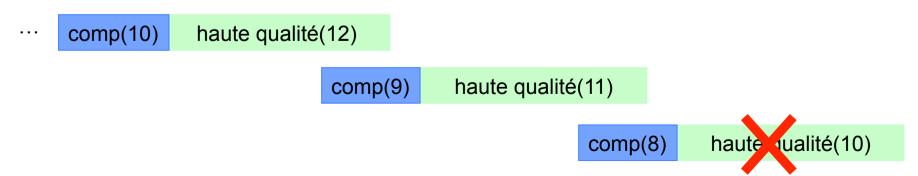

On introduit une « somme XOR » tous les k paquets

bloc de k+1 = 5+1 paquets

permet de récupérer une perte quelconque (mais unique) parmi les k+1 paquets

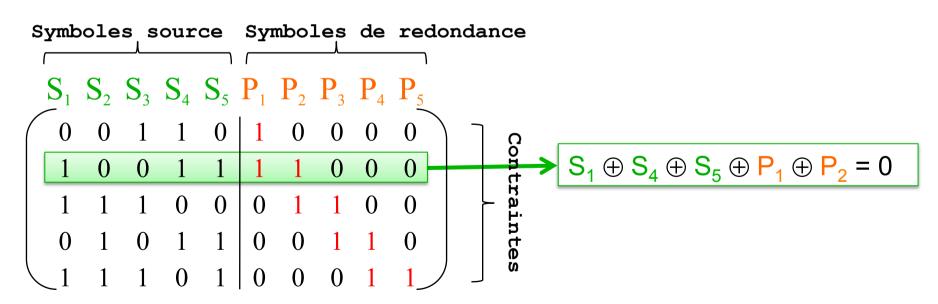
Contre les pertes, des codes FEC... (suite)

- et on peut utiliser des codes plus « puissants »
 - On ajoute **r** paquets de redondance tous les **k** paquets



bloc de k+r = 4+4 paquets

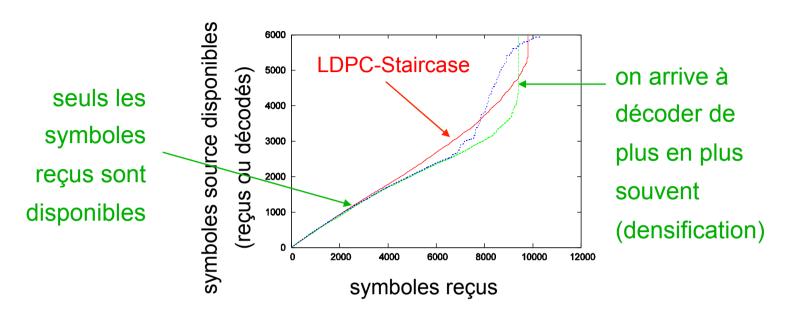
- permet de récupérer r pertes quelconques parmi les k+r paquets ©
- exemple : Reed-Solomon, LDPC-Staircase, etc.


Contre les pertes, des codes FEC... (suite)

- et parfois une redondance toute simple suffit!
- exemple :
 - Oflux audio
 - Oun échantillon audio est encodé deux fois
 - bonne qualité
 - · fortement compressé
 - Ola version compressée est transmise avec un peu de retard
 - en général attaché à un paquet existant
 - Oen cas de perte isolée, le récepteur pourra remplacer le paquet manquant par sa version compressée reçue plus tard

Gros plan 1: les codes LDPC-Staircase

- le cas des codes LDPC-Staircase
 - Oun standard : http://tools.ietf.org/rfc/rfc5170.txt
 - Ointégré au système ISDB-Tmm Japonais ©
 - Oune solution simple mais très efficace
 - capacités de correction et vitesse d'encodage/décodage
 - système linéaire entre symboles source et de redondance

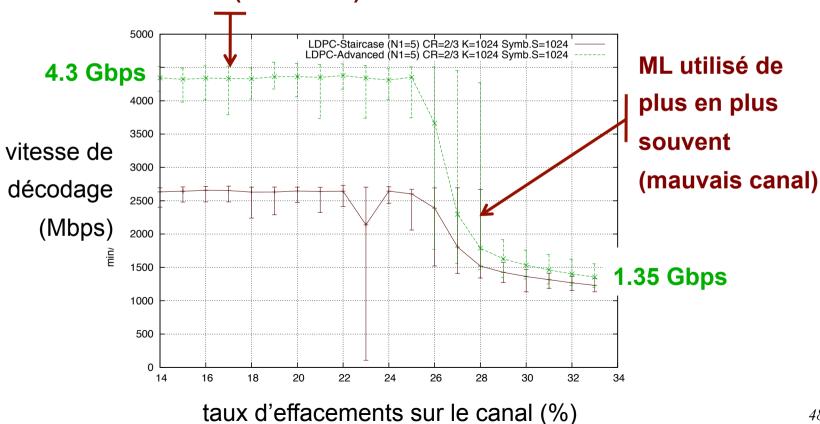


 N_1 "1"s par colonne

- 1 : encodage des codes LDPC-Staircase
 - oc'est trivial
 - On produit les symboles de redondance en séquence: P1, puis P2, puis P3, etc.
 - Ola vitesse d'encodage est très élevée
 - Oexemple: objet de taille 1MO, 1024 symboles source et 512 symboles de redondance, Intel Xeon 5120/1.86GHz/64-bit Linux

k	code rate	N1	encoding speed	number XOR / k
1024	2/3	5	3.33 Gbps	5.499

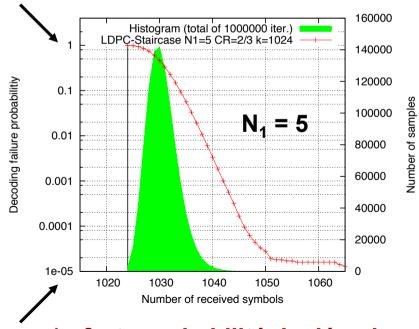
- 2 : décodage des codes LDPC-Staircase
 - Oconsiste à résoudre un système linéaire
 - les variable sont les symboles manquants
 - Solution 1: décodage | Teratif (IT)
 - Oune approche triviale
 - si une équation n'a qu'une variable, sa valeur est connue. On la substitue dans les autres équations où elle intervient, et ainsi de suite
 - possible car le système est très creux!

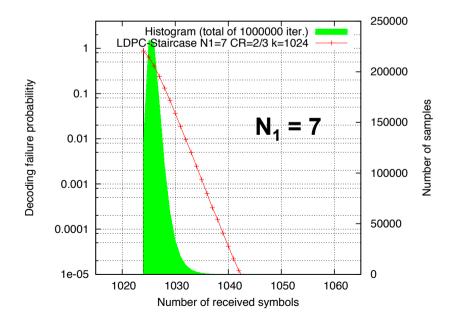


Otrès rapide mais sous optimal

- certains systèmes, bien que non singuliers, ne pourront pas être résolus
- Osolution 2: élimination de Gauss (ML, Max. Likelihood)
 - Ooptimal mais plus coûteux
 - tout système linéaire non singulier sera résolu

- **exemple:** objet de taille 1MO, 1024 symboles source et 512 symboles de redondance, N₁=5, Intel Xeon 5120/1.86GHz/64-bit Linux
- vitesse de décodage

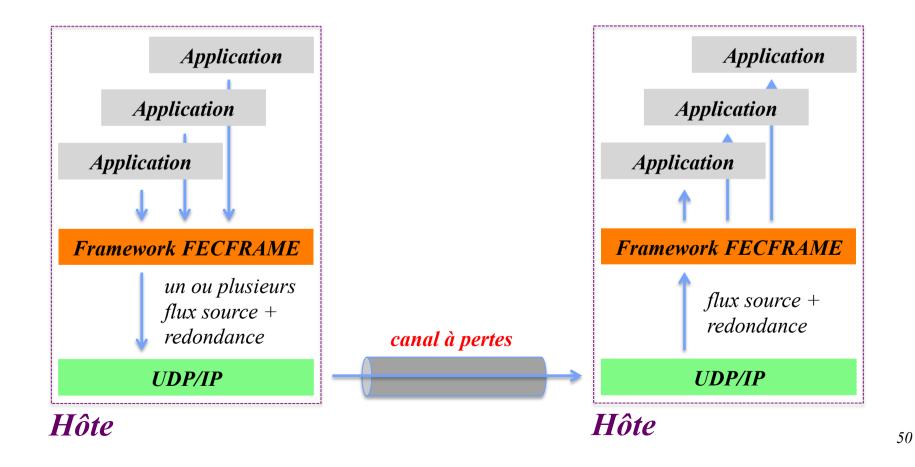

IT suffisant (bon canal)



capacités de correction

paramètres	moyenne	overhead une probabilité d'échec ≤ 10 ⁻⁴
k=1024, N ₁ =5	0.636%	dès 1046 symboles reçus (2.1% ou 22 symboles)
k=1024, N ₁ =7	0.238%	dès 1039 symboles reçus (1.5% ou 15 symboles)

Pr = 1 : décodage impossible

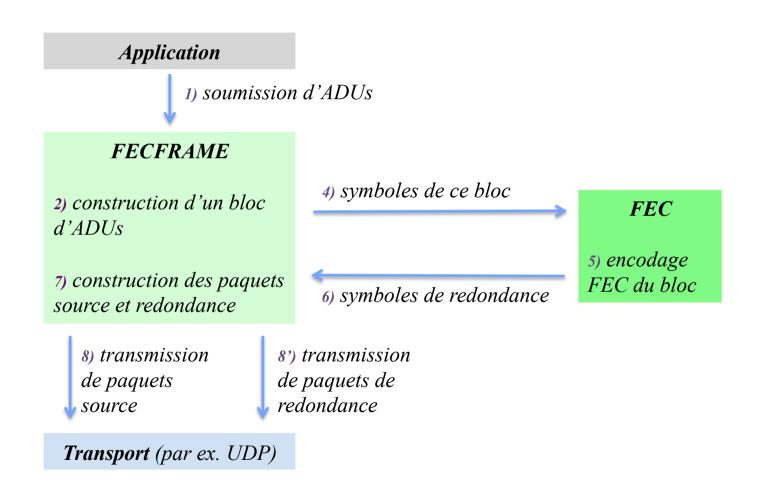


Pr << 1 : forte probabilité de décodage

Gros plan 2: FECFRAME

 FECFRAME, ou comment utiliser les codes FEC dans une solution de streaming

ORFC 6363, October 2011, http://tools.ietf.org/rfc/rfc6363.txt



Gros plan sur FECFRAME... (suite)

- dans le détail, à l'émetteur...
 - 1. on accumule les données de l'application
 - lorsque l'on en a suffisamment ou que l'on est limité par les contraintes temps-réel, on découpe en symboles et on envoie le tout au codec FEC
 - 3. on récupère les symboles de redondances
 - 4. on transmet les symboles source et redondance sur le réseau
- idem coté récepteur

Gros plan sur FECFRAME... (suite)

Oschéma de fonctionnement à l'émetteur

En résumé...

- on a vu...
 - Oles modèles de transmission point à point (ex. VOD / YouTube) et multipoints (ex. TV sur ADSL)
 - **Otrès impactant**
 - Ola nécessité de bufferiser dans le cas du streaming
 - Oaide à combattre les aléas de délai de transmission variable
 - Ola gestion des erreurs
 - Oen point à point ⇒ pris en charge par TCP
 - Oen multipoints ⇒ pris en charge par les codes FEC
 - Oexemple de code FEC : LDPC-Staircase
 - Oexemple d'usage : FECFRAME

4ème partie

Un exemple

- le standard japonais ISDB-Tmm
 - « Mobile Media Broadcasting: ISDB-Tmm », ShinichiroTonooka, MMBI Inc., Mai 2011.

http://www.itu.int/ITU-D/asp/CMS/Events/2011/DigitalBroadcast-May2011/S5 MMBI Japan.pdf

Questions?

 vous aimez les sciences informatiques ? Allez voir le site Interstice, édité par l'Inria :

Ohttp://interstices.info/