W4. Perception & Situation Awareness & Decision making

- Robot Perception for Dynamic environments: Outline & DP-Grids concept
- Dynamic Probabilistic Grids Bayesian Occupancy Filter concept
- Dynamic Probabilistic Grids Implementation approaches
- Object level Perception functions (SLAM + DATMO)
- Detection and Tracking of Mobile Objects Problem & Approaches
- Detection and Tracking of Mobile Objects Model & Grid based approaches
- Embedded Bayesian Perception & Short-term collision risk (DP-Grid level)
- Situation Awareness Problem statement & Motion / Prediction Models
- Situation Awareness Collision Risk Assessment & Decision (Object level)

Christian Laugier MOBILE ROBOTS AND AUTONOMOUS VEHICLES

Situation Awareness – Problem statement

Main difficulties

Uncertainty, Partial Knowledge, World changes, Human in the loop + Real time

- **Approach**: *Prediction* + *Risk Assessment* + *Bayesian Decision*
 - Reasoning about Uncertainty & Contextual Knowledge => History & Prediction
 - Avoiding pending & future collisions
 => Probabilistic Collision Risk at horizon t+δ
 - Decision making by taking into account the predicted behavior of the other traffic participants (cars, cycles, pedestrians...)

Collision Risk Assessment at Object level Increasing time horizon using Semantics & Motion models

- More complex than conservative short-term Collision Risk (e.g. TTC)
 - ⇒ Understand the Current Situation & its likely Evolution
 - ⇒ Evaluate the **Risk** of future Collision for **Safe Navigation Decision**

Context & Semantics => History & Space geometry & Traffic rules + Behavior Modeling & Prediction => For all surrounding traffic participants + Probabilistic Risk Assessment

Collision Risk Assessment –*Two classes of Approaches*

- Trajectory Prediction & Probabilistic Collision Risk
 - Behaviors Modeling & Learning, e.g. using Hierarchical HMM
 - Trajectories Prediction, e.g. using Layered HMM + Gaussian Processes
 - Probabilistic Risk Assessment, *e.g. GP* & *MC simulation* [Tay 09] [Laugier et al 11]
- Cooperative Safety by reasoning on Drivers Intentions & Expectations (taking into account interdependencies)
 - Exchanging vehicles states information
 using V2V communications and/or Perception
 - Estimating Drivers Behaviors using States information & Traffic rules
 - Comparing "Drivers Intentions & Expectations"

e.g. using Dynamic Bayesian Network

[Lefevre et al 11-12]

Why Motion & Prediction Models ?

Motion & Prediction models are necessary in order to :

- Estimate the current traffic situation from data (tracking)
- **Predict** the evolution the current traffic situation (prediction)
- Make decisions according to current & future traffic situation (decision making)

Motion & Prediction Models – Outline

Motion Models can be classified in three main classes:

- Physics-based motion models are the simplest models. They consider that the motion of vehicles only depends on the laws of physics
- Maneuver-based motion models are more advanced as they consider that the future motion of a vehicle also depends on the maneuver that the driver intends to perform
- Interaction-aware motion models take into account the interdependencies between vehicles' maneuvers
 → Only a few examples of such advanced representations may be found in the literature

Motion & Prediction Models – *Main features*

	Target	Variables	Challenges	Tools	
Symbolic	Interaction-aware models	 Social conventions Detecting interaction Joint activities. Identifying interaction Communications. Combinatorial explose 	- Detecting interactions. - Identifying interactions. - Combinatorial explosion	 Coupled HMMs. Dynamically-linked HMMs. Rule-based systems. 	
					Classification
					&
	Maneuver-based models	 Intentions Perception Surrounding objects and places. 	- Unobservability. - Complexity of intentional behavior.	 Clustering. Planning as prediction. Hidden Markov Models. Goal oriented models. Reinforcement Learning. 	Main features
	NINNINNIN	וטמוממוווממווימ	NNNNNNNNN	MANNININAN	
Metric	Physics-based models	- Kinematic and dynamic properties	- State estimation from noisy sensors. - Sensitivity to initial conditions.	- Kalman Filters. - Monte Carlo sampling.	

Motion & Prediction Models – Illustration

Physics-based motion model

Maneuver-based motion model

GIVE

GIVE

Interaction-aware motion model

GIVE

GIVE

Constant speed & orientation => Crash situation given byTTC

- Black car straight
- Blue car turn left
- => Crash might be avoided
- Black car straight
- Blue car turn left

Stop !

- Joint motion of cars constrained by traffic rules
- => Crash is avoided

Physics-based motion models – *Main idea*

• Represent vehicles as dynamic entities governed by the laws of physics

- **Dynamic models:** Mainly based on Lagrange's equations
- Kinematic models: Most common assumptions: Constant Velocity or Acceleration, Constant Turn Rate & Velocity, Constant Turn Rate & Acceleration

Physics-based motion models Dynamic & Kinematics Models

Dynamic models

- Some complex models based on Lagrange's equations, taking into account the different forces that affect the motion of a vehicle
- Some simpler models based on the "bicycle" assumptions
- Typically used for advanced control applications

Kinematic models

- Much simpler that dynamic models, represent the mathematical relationship between the parameters of the movement, without considering the forces which affect the motion
- Most common assumptions / models:

Constant Velocity, Constant Acceleration, Constant Turn Rate & Velocity, Constant Turn Rate & Acceleration

Physics-based motion models – *Trajectory prediction*

Single trajectory prediction

+ Computationally efficient

- Does not take into account uncertainty

Physics-based motion models – *Trajectory prediction*

Gaussian noise simulation

+ Computationally efficient

- + Takes into account some uncertainty
- Does not represent uncertainty on maneuver

Physics-based motion models – *Trajectory prediction*

Monte Carlo Simulation

+ Takes into account uncertainty

- Computationally slow

Maneuver-based motion models – Main idea

 Represent the motion of the vehicle as a series of maneuvers executed independently of the other vehicles

Maneuver-based motion models *Prototype trajectories* (for Estimation & Prediction steps)

- Step 1: Maneuver estimation
 - Group all possible trajectories on the road in clusters which
 represents maneuvers. Clusters are learned from data
 - Match the observed partial trajectory to the clusters to identify the current maneuver
- Step 2: Trajectory prediction
 - Solution 1: Select the most likely motion pattern
 - Solution 2: Compute a probability distribution over the different motion patterns

Maneuver-based motion models Two steps approach & Main methods

• **Basic idea:** Maneuver estimation step & Trajectory prediction step are **performed independently**

- Common approaches for Maneuver Estimation
 - Discriminative classification approaches such as Support Vector
 Machines
 - Generative approaches such as Hidden Markov Models
- Common approaches for Trajectory Prediction
 - Gaussian Processes, Rapidly-exploring Random Tree (RRT)...

Interaction-Aware motion models – Main idea

 Represent the motion of a vehicle as a series of maneuvers, but this time the motion of a vehicle is assumed to be influenced by the motion of the other vehicles

Interaction-Aware motion models – Approaches

- Most approaches are based on *Dynamic Bayesian Networks*, since the representation of dependencies between variables (and vehicles) is easily integrated
- Coupled Hidden Markov Models can be used for modeling maneuvers
- Making use of an **explicit representation** of what a driver is expected to do, based on the maneuver intention of the other vehicles

=> More details in the next session

Conclusion on Motion & Prediction Models

- Physics-based motion models
 - Valid for short-term predictions only

- Maneuver-based motion models
 - Longer term prediction based on series of maneuvers
 - May result in some erroneous predictions

- Interaction-aware motion models
 - Predictions of most probable joint motion of vehicles in the scene