W1. Objectives, Challenges, State of the Art, Technologies

- Socio-economic context
- Technological evolution of Robotics & State of the Art
- New challenges for Robotics in Human Environments
- Decisional & Control Architecture for Autonomous Mobile Robots & IV
- Sensing technologies: Object Detection
- Sensing technologies: Robot Control & HRI
- Basic technologies for Navigation in Dynamic Human Environments
- Intelligent Vehicles: Context & State of the Art
- Intelligent Vehicles: Technical Challenges & Driving Skills

Appropriate Decisional & Control Architecture

→ Combining & Adapting four interdependent functions (Sensing, Interpreting, Deciding, Acting)

Sensing the environment using various sensors

Interpreting the dynamic scene using context & semantics

Planning robot motions

Deciding of the most appropriate action to be executed (with a Goal in mind)

Sense

Objective: Perceive what is happening in the Dynamic Scene using various sensors

Sense

Main Difficulty

- ✓ Huge heterogeneous sensory data
- ✓ Sensing errors & Uncertainty
- ✓ Real-time processing

Main Functions

- ✓ Localization & Mapping (SLAM)
- ✓ Static & Mobile Objects Detection

- ✓ Bayesian Filtering
- ✓ Feature based & Grid based approaches

Interpret

Objective: Understand the content of the Dynamic Scene using Contextual & Semantic knowledge

Interpret

Objective: Understand the content of the Dynamic Scene using Contextual & Semantic knowledge

Interpret

Main Difficulty

- ✓ Uncertainty & Huge volume of sensory data to be processed
- ✓ Real-time processing
- ✓ Reasoning about various knowledge: history, context, semantics, prediction models

Main Functions

- ✓ Detection & Tracking of Mobile Objects (DATMO)
- ✓ Objects classification (recognition)
- ✓ Prediction & Risk Assessment: avoiding future collisions

- ✓ Bayesian Perception Paradigm
- ✓ Behaviors modeling & learning
- ✓ Bayesian approaches for Prediction & Risk Assessment

Plan & Decide

Objective: Planning robot motions & Deciding of the most appropriate action to be executed by the robot (Goal & Context & Risk)

Step1
Iterative Motion Planning under Time & Risk constraints

Interpret

Plan & Decide

Sense

Act & Interact

Real world

Dynamic Human Environment

Plan & Decide

Objective: Planning robot motions & Deciding of the most appropriate action to be executed by the robot (Goal & Context & Risk)

Step 2
Decision making driven by Context & Collision Risk

Plan & Decide

Main Difficulty & Functions

- ✓ On-line Motion Planning under various constraints: time, kinematic, dynamic, uncertainty, collision risk, social
- ✓ Decision making under uncertainty using contextual data: history, semantics, prediction

- ✓ Iterative Risk-based Motion Planning: e.g. Risk-RRT
- ✓ Decision making using Contextual data & Bayesian networks

Objective: Controlling the robot for executing **Safe & Socially Acceptable** robot actions, while taking into account the related **Human – Robot Interactions**

Act & Interact Real world Dynamic Human Environment

Step 1
Autonomous Safe Navigation (adapted to Task & Context)

Objective: Controlling the robot for executing **Safe & Socially Acceptable** robot actions, while taking into account the related **Human – Robot Interactions**

Step 2
Autonomous Navigation under Safety & Social constraints

Interpret

Sense

Act & Interact

Real world

Dynamic Huma Environment

Navigation autonome en environnement humain

Main Difficulty & Functions

- ✓ Robot navigation while taking into account both Safety & Social constraints
- ✓ Human in the loop!

- ✓ Human-Aware Navigation paradigm: safety & social filters
- ✓ Intuitive Human-Robot Interaction

Main Difficulty & Functions

- ✓ Robot navigation while taking into account both Safety & Social constraints
- ✓ Human in the loop!

- ✓ Human-Aware Navigation paradigm: safety & social filters
- ✓ Intuitive Human-Robot Interaction

Pictures & Movies

- p. 2: By Ars Electronica flickr- CC BY-NC-ND 2.0
- p. 7 to 13: © Inria E-Motion Team
- p. 15: Rights Reserved
- p. 16: © Inria E-Motion Team