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Clustering arises in various contexts

Clustering individuals w.r.t. features

Clustering features

Clustering graphs
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Objectives

Topic of the talk

K-means (relaxed or not) must and can be debiased

we derive some non-asymptotic partial recovery bounds for a relaxed K-means

some optimality in terms of exponential exponent

Main message

A corrected convex relaxation of K-means achieves some rate-optimal performances in
various settings including (conditional) mixture of sub-Gaussian and (conditional)
Stochastic Block Model.

Only tuning Parameter is K
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1 Two clustering Models

2 K-means and relaxed K-means

3 Corrected K-means

4 Partial Recovery bounds
subGaussian Mixtures
Stochastic Block Models
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Mixture of subGaussian variables Pearson(’1895)

Partition

Partition G∗ = {G∗1, . . . , G∗K} of {1, . . . , n}

Mixture of subGaussian variables (conditional)

X1, . . . , Xn ∈ Rp are independent with

E[Xa] = µk if a ∈ G∗k
Σ
−1/2
a Xa is SubGauss(L2Ip) where Σa = Cov (Xa) and L ≥ 1.

The observations are gathered in X = [X1, . . . , Xn] ∈ Rp×n

Objective : recovering G∗ from X (µ and Σ are unknown but K is known)
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Stochastic Block Model (SBM)

Holland et al(83), Abbe(’17),
Let X = adjacency matrix of an undirected graph ∈ {0, 1}n×n.

Let Q ∈ [0, 1]K×Ksym

(conditional) SBM

The graph is generated by a SBM with partition G∗ and matrix Q if Xab with a < b
are independent and

P[Xab = 1] = Qjk for any a ∈ G∗j and b ∈ G∗k ,

Objective : recovering G∗ from X (Q is unknown.)
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How do we encode partition learning ?

Membership Matrix A ∈ {0, 1}n×K defined by Aak = 1a∈Gk
(or equivalently

function k : [n] 7→ [K])
is NOT Identifiable. Why ?

A more suitable object : The n× n Partnership matrix
B∗ = A(ATA)−1AT

B∗ab =

{
1
|G∗

k
| if a and b belong to the same G∗k

0 else

Invariant with respect to the group labeling.
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K-means criterion

Ĝ ∈ arg minG Crit(X, G) where

Crit(X, G) =
K∑
k=1

∑
a∈Gk

‖Xa −XGk
‖2 ,

where XGk
= 1
|Gk|

∑
a∈Gk

Xa

In practice, iterative minimization based on Lloyd’s algorithm LLoyd(’82) .

Two steps :

1 Compute the centroids

2 Update the partition

Two caveats :

There can be many local optima.

In worst-case solving K-means is NP -hard (Mahajan et al.(’09))
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Ĝ ∈ arg minG Crit(X, G) where

Crit(X, G) =
K∑
k=1

∑
a∈Gk

‖Xa −XGk
‖2 ,

where XGk
= 1
|Gk|

∑
a∈Gk

Xa

In practice, iterative minimization based on Lloyd’s algorithm LLoyd(’82) .

Two steps :

1 Compute the centroids

2 Update the partition

Two caveats :

There can be many local optima.

In worst-case solving K-means is NP -hard (Mahajan et al.(’09))

8/31



K-means criterion
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Rewriting K-means

Crit(X, G) =
∑
k

|Gk|‖XGk
‖2 − 2

∑
a,b ∈Gk

〈Xa, Xb〉
1

|Gk|
+
∑
a

‖Xa‖2

= −
∑
k

∑
a,b ∈Gk

〈Xa, Xb〉
1

|Gk|
+ . . .

= −〈XTX,B〉+ . . .

Lemma (Peng & Wei(07))

The K-means minimizer Ĝ satisfies

B̂ ∈ arg min
B∈D
〈−XTX,B〉 ,

D :=

B ∈ Rp×p :

• B < 0
•
∑
a Bab = 1,∀b

• Bab > 0, ∀a, b
• Tr(B) = K
• B2 = B


Proof : Perron-Frobenius
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Relaxed K-means

Idea : drop the B2 = B condition.

1 Estimate B∗ using the semi-definite program (SDP)

B̂ = arg min
B∈C

〈−XTX,B〉

where

C :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K


2 (Compute Ĝ by applying any clustering algorithm on B̂)

Remark :

Convex optimization but many constraints :
https://cims.nyu.edu/~villar/mnist.html

No information of the group sizes are needed.
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A second relaxation : Spectral Clustering

Spectral Clustering

1 Compute the matrix Û made of the K-leading eigenvectors of XTX

2 Estimate Ĝ by distance clustering on the rows of Û.

(e.g. Apply an approximate K-means algorithm to the rows of the matrix Û)

Lemma (Peng & Wei(07))

Spectral Clustering is equivalent to

1 Estimate B∗ using the semi-definite program (SDP)

B = arg min
B∈C

〈−XTX,B〉

C : =

{
B ∈ Rp×p :

• 1 < B < 0
• Tr(B) = K

}

2 Compute Ĝ by distance clustering on the rows of B

=⇒ it amounts to dropping the constraints B1 = 1, Bab > 0 in the former relaxation
Proof : 1) B = ÛÛT

2) (ÛÛT )a• is some orthogonal transformation of Ûa•.
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11/31



1 Two clustering Models

2 K-means and relaxed K-means

3 Corrected K-means

4 Partial Recovery bounds
subGaussian Mixtures
Stochastic Block Models

12/31



Wikipedia knows

CritK(G) =
K∑
k=1

∑
a∈Gk

‖Xa −XGk
‖2

Quantization rather than clustering
https://en.wikipedia.org/wiki/K-means_clustering
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Caveat

A simple model

Assume that the "points" Xa are independent random variables with

E[Xa] = µa and Tr(Cov (Xa)) = Γa.

CritK(G) =
K∑
k=1

∑
a∈Gk

‖Xa −XGk
‖2

Expected value at G

For a partition G we have

E[CritK(G)] =
1

2

∑
k

1

|Gk|
∑

a,b∈Gk

‖µa − µb‖2 +
∑
a

Γa −
∑
k

1

|Gk|
∑
a∈Gk

Γa

−→ tends to split "wide" clusters : a correction is needed !
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Caveat (alternative view)

Recall our Minimization Problem : 〈−XTX,B〉

sGaussian Mixtures are of the form : Xa = E[Xa] + Ea = Information + Noise ,

E[XTX] = E[X]T E[X] + Γ , where Γaa = Tr[Cov (Ea)]

Population K-means vs Ideal K-means

Bpop = arg min
B∈D
〈−E[X]T E[X]− Γ,B〉

Bid = arg min
B∈D
〈−E[X]T E[X],B〉

Since Tr[B] = K, we have Bpop = Bid when Γ = γI.

For heterogenerous Γ, Bpop
aa tends to take large values for large Γaa

(it splits wide clusters).
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Estimation of Γ

Remark : If we knew the groups, we could estimate Γ = diag(Γ1, . . . ,Γn) by

Γ̂aa = 〈Xa −Xne1(a), Xa −Xne2(a)〉

with ne1(a) and ne2(a) two "neighbors" of a.

Definition

Set U(a, b) := max
c,d∈[n]\{a,b}

∣∣∣∣〈Xa −Xb, Xc −Xd
‖Xc −Xd‖

〉∣∣∣∣ and
n̂e1(a) := arg min

b∈[n]\{a}
U(a, b) and n̂e2(a) := arg min

b∈[n]\{a,n̂e1(a)}
U(a, b)

Then, the estimator Γ̂ is the diagonal matrix defined by

Γ̂aa = 〈Xa −Xn̂e1(a), Xa −Xn̂e2(a)〉
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Corrected relaxed K-means

Corrected relaxed K-means (Bunea et al.(’16))

Solve the SDP
B̂ ∈ argmin

B∈C
〈

Γ̂

−XTX,B〉 ,

with

C :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K


Similarly, one may define a corrected spectral clustering.
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Partial recovery bounds

Proportion of misclustered points

err(Ĝ,G∗) = min
π∈SK

1

2n

K∑
k=1

∣∣∣G∗k4Ĝπ(k)

∣∣∣

Our goal

Prove that with high-probability, when s2 is large

prop. misclustered = err(Ĝ,G∗) ≤ e−cs
2

where s2 is an appropriate SNR.

Other related goals :

partial recovery : Find the minimal s2 such that err(Ĝ,G∗) is smaller than
random guess whp.

Perfect recovery : Find the minimal s2 such that err(Ĝ,G∗) = 0 whp.
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Clustering subGaussian mixtures

Mixture of subGaussian variables

X1, . . . , Xn ∈ Rp are independent with

E[Xa] = µk if a ∈ G∗k
Σ
−1/2
a Xa is SubGauss(L2Ip) where Σa = cov(Xa)

We set

∆2 = min
j 6=k
‖µk − µj‖2, σ2 = L2 max

k
|Σk|op and RΣ = max

k

|Σk|2F
|Σk|2op

,

and define the SNR

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

where m denotes the size of the smallest cluster.
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Toy Examples

Simplification : K = 2, |G∗1| = |G∗−1| = n/2, Σ1 = Σ−1 = σ2Ip, µ−1 = −µ1.

Simplified Model 1 : µ1 is known. Bayes Classifier achieves :

E[err(Ĝ,G∗)] = 2P[N (0, σ2) > ‖µ1‖] ≤ 2 exp

[
−

∆2

8σ2

]

Simplified Model 2 : µ1 is sampled uniformly on the sphere of radius ∆/2.
Labels Za ∈ {−1, 1} for a = 1, . . . , n are known.

Objective : classify a new observation X.

Optimal Classifier : ĥ(x) = sign
(
〈 1
n

∑n
a=1 ZaXa, x〉

)
:

achieves the rate e−c∆
2/σ2

if ∆2

σ2 & 1 ∨ p
n
.

achieves the rate e−cn∆4/(pσ4) if 1 ∨
√

p
n
. ∆2

σ2 . 1 ∨ p
n
.

See Ndaoud(’18) for proper lower bounds.
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Partial recovery bounds

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

Theorem (Giraud and V. (’18))

If s2 & n/m (+ mild assumption), then P
[
err(Ĝ,G∗) > e−cs

2
]
. 1
n2 .

s2 & n/m is equivalent to ∆2 & σ2 n
m

(
1 ∨

√
RΣ
n

)
= σ2K

(
1 ∨

√
RΣ
n

)
.

Remarks :
1 s2 reduces to ∆2/σ2 when ∆2/σ2 ≥ RΣ/m

Fei and Chen (’18) , See Lu and Zhou (’16), Ndaoud(’18) for sharp constants

2 perfect recovery for s2 & log(n) ∨ (n/m) = log(n) ∨K
Dependency in K is suboptimal.
Vempala and Wang(’04)  s2 & log(n) ∨

√
K log(n) when n� p3.

3 Do not cover the case where the proportion of error is ≥ e−c′′K .
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Benefit of Corrected K-means

Mild price for Γ estimation : ‖Σk‖opTr(Σk)

‖Σk‖2F
. n

log(n)

Without correction, additional assumption is required :

∆2 &
max Γa −min Γa

m

For a balanced Partition, it amounts to

∆2 & σ2K

(
1 ∨

√
RΣ

n
∨

maxk tr[Σk]−mink tr[Σk]

n

]
.
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Proof Ideas

Simple Versions : All ‖µi − µj‖2 are equal

Step 1 : |B̂−B∗|1 small implies that err(Ĝ,G) is small.

New Objective : Show that 〈XTX− Γ̂,B∗ −B〉 > 0 as long as |B∗ −B|1 is not
small

〈XTX− Γ̂,B∗ −B〉 = 〈AµµTAT ,B∗ −B〉+ 〈ETE− Γ,B∗ −B〉

+〈Γ− Γ̂,B∗ −B〉+ 〈AµET + EµAT ,B∗ −B〉

We focus on the two first terms

Signal Term : 〈AµµTAT ,B∗ −B〉 = 1
4

∆2|B∗ −B∗B|1
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Proof Ideas

Simple Versions : All ‖µi − µj‖2 are equal

Step 1 : |B̂−B∗|1 small implies that err(Ĝ,G) is small.

New Objective : Show that 〈XTX− Γ̂,B∗ −B〉 > 0 as long as |B∗ −B|1 is not
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Control of the quadratic term : 〈ETE− Γ,B∗ −B〉

B∗ is projection operator that averages over element of the same group.
 Decomposition of ETE− Γ by applying B∗ or (I−B∗).

Step 3 : Control of the Projection Along Im(B∗)

〈(I−B∗)(ETE− Γ)(I−B∗),B∗ −B〉 ≤ ‖ETE− Γ‖op‖(I−B∗)[B∗ −B](I−B∗)‖∗

= ‖ETE− Γ‖op
1

2m
|B∗ −B∗B|1

 Concentration of ETE in operator norm

Step 4 : Control of 〈B∗(ETE− Γ),B∗ −B〉.

A First try : 〈A,B〉 ≤ |A|∞|B|1 does not lead to exponential bounds.

A Second try (Fei and Chen(’17)) : 〈A,B〉 ≤
∑|B|1
i=1 A(i), where A(1) ≥ A(2) ≥ . . .

Control of the order statistics B∗(ETE− Γ) by Hanson-Wright inequality + Union
bound
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Model 2 : graph clustering

(conditional) SBM

Assume that the graph is generated by a SBM with Qjk = probability of connection
between nodes of groups j and k.
Let X = adjacency matrix of the graph ∈ {0, 1}n×n.

For a ∈ G∗k : Xa = [QA]k: −Qkkea + Ea, where Ea = Xa − E[Xa]

∆2 = min
j 6=k
‖[QA]k: − [QA]j:‖2 ≥ m×min

j 6=k
‖Qk: −Qj:‖2

(
≥ 2mλmin(Q)2

)
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Partial recovery for SBM

∆2 = min
j 6=k
‖[QA]k: − [QA]j:‖2 ≥ m×min

j 6=k
‖Qk: −Qj:‖2

(
≥ 2mλmin(Q)2

)
L ≥ ‖Q‖op ∨ 1/m

Theorem (Giraud and V.(’18))

We set s2 = ∆2/L . If s2 & n/m we have P[err(G, Ĝ) > e−cs
2
] . 1/n2

if we have enforced ‖B‖op ≤ K3

n
e4nL.
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Comments

Assortative case : Q = (p− q)I + q11T and m = n/K

1 s2 = 2m(p− q)2/p for p ≥ K/n.
tight constants in Gao et al.(’17), Yun and Proutière(’14)

2 perfect recovery for
(p− q)2

p
&
K2 ∨K log(n)

n

Matches Best known polynomial time algorithm condition Chen and Xu(’16)
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Comments (General Q)

Exponential decay :
Abbe and Sandon(’15) consider the scaling Q = Q0 log(n)/n for a fixed K. Results
not completely comparable.

Perfect recovery : if ‖Q‖op = O(minj,k Qjk), we recover (up to constant) the
optimal condition of Abbe and Sandon(’15)

Other SDP for SBM : Relaxed K-means differs from Chen & Xu(’16), Hajek et
al.(’16), Guédon & Vershynin(’16), Perry & Wein (’16). . .

B̃ = arg max
B∈C′

〈X,B〉

for assortative graphs (diag(Q)> nondiag(Q) )
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Proof

Same arguments, but :

spectral control requires trimming arguments in the proof

control of quadratic terms quite messy due to the symmetry of X (peeling,
conditionning, . . . )
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Summary

Main message

A corrected convex relaxation of K-means achieves some rate-optimal performances in
various settings including (conditional) mixture of sub-Gaussian and (conditional)
Stochastic Block Model.

Only tuning Parameter is K

F. Bunea, C. Giraud, M. Royer, N. V. PECOK : a convex optimization approach to
variable clustering. Annals of Statistics. ArXiv:1606.05100

C. Giraud and N.V. Partial recovery bounds for clustering with the relaxed
K-means. Mathematical Statistics and Learning ArXiv:1807.07547

Merci pour votre attention !
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