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Clustering arises in various contexts

Clustering individuals w.r.t. features

L. LI Wy Y

o gy
h

Clustering graphs
Clustering features

24 Genes 8 Genes & Genes 2 Genes

\\’—// A

= I~/

Nl o

7 == I

36 cenes 173 Genes 213 Genes

1/31



Topic of the talk

m K-means (relaxed or not) must and can be debiased
m we derive some non-asymptotic partial recovery bounds for a relaxed K-means

m some optimality in terms of exponential exponent

Main message

A corrected convex relaxation of K-means achieves some rate-optimal performances in
various settings including (conditional) mixture of sub-Gaussian and (conditional)
Stochastic Block Model.

Only tuning Parameter is K
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Two clustering Models
K-means and relaxed K-means
Corrected K-means

Partial Recovery bounds
m subGaussian Mixtures
m Stochastic Block Models
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Mixture of subGaussian variables

Partition G* = {G7,...,G}} of {1,...,n}

Mixture of subGaussian variables (conditional)

X1,...,Xn € RP are independent with
m E[X,] = p if a € G},

(] E;l/QXa is SubGauss(L2I,) where 3, = Cov (X,) and L > 1.

The observations are gathered in X = [X1,..., X,] € RP*"
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Mixture of subGaussian variables

Partition G* = {G7,...,G}} of {1,...,n}

Mixture of subGaussian variables (conditional)

X1,...,Xn € RP are independent with
m E[X,] = p if a € G},

(] E;l/QXa is SubGauss(L2I,) where 3, = Cov (X,) and L > 1.

, Xn] € RPX™
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Objective : recovering G* from X (u and X are unknown but K is known)
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Stochastic Block Model (SBM)
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Holland et al(83), Abbe('17),
Let X = adjacency matrix of an undirected graph € {0,1}"*".
Let Q € [0, 155K

(conditional) SBM

The graph is generated by a SBM with partition G* and matrix Q if X, with a < b
are independent and

PXq = 1] = Q. for any a € G} and b € G},
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Holland et al(83), Abbe('17),
Let X = adjacency matrix of an undirected graph € {0,1}"*".
Let Q € [0, 1],

(conditional) SBM

The graph is generated by a SBM with partition G* and matrix Q if X, with a < b
are independent and

PXq = 1] = Q. for any a € G} and b € G},

Objective : recovering G* from X (Q is unknown.)



Two clustering Models
K-means and relaxed K-means
Corrected K-means

Partial Recovery bounds
m subGaussian Mixtures
m Stochastic Block Models
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How do we encode partition learning ?

Membership Matrix A € {0,1}"*X defined by A, = 1aeg,, (or equivalently
function k : [n] — [K])
is NOT lIdentifiable. Why ?
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How do we encode partition learning ?

Membership Matrix A € {0,1}"*X defined by A, = 1aeg,, (or equivalently
function k : [n] — [K])
is at best identifiable up to permutation

A more suitable object : The n x n Partnership matrix
B* = A(ATA)"1AT

B, — |G1; if @ and b belong to the same G,
@ 0 else

Invariant with respect to the group labeling.
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K-means criterion
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G € argming Crit(X, G) where
K —
Crit(X,6) = > > [[Xa — X, |12,
k=1a€Gy

~. _ 1
where X, = en; >aca, Xa

In practice, iterative minimization based on Lloyd's algorithm LLoyd('82) .
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K-means criterion

G € argming Crit(X, G) where
K —
Crit(X,G) = > > [ Xa—Xg,l?,
k=1a€Gy
where ng = ﬁ Zaeck Xa

In practice, iterative minimization based on Lloyd's algorithm LLoyd('82) .

Two steps :
Compute the centroids
Update the partition
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K-means criterion

G € argming Crit(X, G) where
K —
Crit(X,6) = > > [[Xa — X, |12,
k=1a€Gy

~. _ 1
where X, = en; >aca, Xa

In practice, iterative minimization based on Lloyd's algorithm LLoyd('82) .

[ J
[ ]
Two steps : | ° . °
Compute the centroids ® °
Update the partition me

Two caveats :
m There can be many local optima.

m In worst-case solving K-means is N P-hard (Mahajan et al.('09))
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Rewriting K-means

. 1
Crit(X,Q) = Z|Gk\||XGk||2—2 3 Xa,Xb)m-i-Z”XaHQ
a,b €Gy k a
1
= X Y Xt
k a,b €Gy k|
—(XTX,B) +...
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Rewriting K-means

. 1
Crit(X,Q) = Z|Gk\||xgk||2—2 3 Xa,Xb>m+Z||Xa||2
a,b €Gy k a
1
S M) DCAPTEL I
k a,b €Gy k|
—(XTX,B) +...
Lemma ( )

The K-means minimizer G satisfies

Bearg énei%(—XTX, B)

eB =0

o> . Bu=1W
D:={BecRP*P: e B,y >0, Va,b

e Tr(B) =K

eB’=B

Proof : Perron-Frobenius
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Relaxed K-means

Idea : drop the B2 = B condition.

Estimate B* using the semi-definite program (SDP)

where

C:=

BeC

BERan:

B = argmin(—X7X, B)

eB >0

> . Bu=1W
e B,, >0, Va,b
e Tr(B)=K

(Compute G by applying any clustering algorithm on ]§)

Remark :

m Convex optimization but many constraints :
https://cims.nyu.edu/"villar/mnist.html

m No information of the group sizes are needed.
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https://cims.nyu.edu/~villar/mnist.html

A second relaxation : Spectral Clustering

Spectral Clustering

Compute the matrix U made of the K-leading eigenvectors of X7 X
Estimate G by distance clustering on the rows of 0.

(e.g. Apply an approximate K-means algorithm to the rows of the matrix ﬁ)

11/31



A second relaxation : Spectral Clustering

Spectral Clustering

Compute the matrix U made of the K-leading eigenvectors of X7 X
Estimate G by distance clustering on the rows of 0.

(e.g. Apply an approximate K-means algorithm to the rows of the matrix ﬂ')

Lemma ( )

Spectral Clustering is equivalent to

Estimate B* using the semi-definite program (SDP)

B = arg min(—XTX, B)
BeC

. — pxp. ®*1=B=0
C.—{BER Do K

Compute G by distance clustering on the rows of B

= it amounts to dropping the constraints B1 = 1, B, > 0 in the former relaxation
Proof : 1) B = UUT
2) (UUT),, is some orthogonal transformation of Uge.
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Corrected K-means
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Wikipedia knows

K
Critg (G) =Y _ [Xa — X, |I?
k=1a€cGy

Original Data k-Means Clustering
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Quantization rather than clustering
https://en.wikipedia.org/wiki/K-means_clustering
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https://en.wikipedia.org/wiki/K-means_clustering

A simple model

Assume that the "points" X, are independent random variables with

E[Xa] = pa and Tr(Cov (Xg4)) =Tq.

K

Critg (G Z Z 1Xa = X, II?

k=1a€cGy

Expected value at G

For a partition G we have

Bt (@) =3 3 51 2o M= ol + 2T - Z -y
k

a,beGy, a aeG;C
— tends to split "wide" clusters : a correction is needed !
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Caveat (alternative view)

Recall our Minimization Problem : (—X7X B)

sGaussian Mixtures are of the form : X, = E[X4] + E, = Information + Noise ,

EXTX] =EX]|TEX]+T, where T'gq = Tr[Cov (E,)]
Population K-means vs ldeal K-means
BPP = arg mm( EX]T E[X] — T, B)
B = arg mln( E[X]T E[X], B)

m Since Tr[B] = K, we have BP°? = B when I = 41.

m For heterogenerous T', BLoP tends to take large values for large T'uq
(it splits wide clusters).
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Remark : If we knew the groups, we could estimate T' = diag(I'1,...,I's) by
Taa = (Xa — Xnel(a)’Xa - Xneg(a))

with nei(a) and nez(a) two "neighbors" of a.
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Remark : If we knew the groups, we could estimate T' = diag(I'1,...,I's) by

Taa = (Xa — Xnel(a)’Xa - Xneg(a))

with nei(a) and nez(a) two "neighbors" of a.

Definition

Then, the estimator T is the diagonal matrix defined by

f‘aa = (Xa - Xﬁ?gl(a),Xa - XTTE2(¢1)>
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Remark : If we knew the groups, we could estimate T' = diag(I'1,...,I's) by

Taa = (Xa — Xnel(a)’Xa - Xneg(a))

with nei(a) and nez(a) two "neighbors" of a.

Xe — Xg
Set U(a,b) := max Xoq — Xp, —— )| and
(0= acRem | X ™% o= xal
nei(a) := argmin U(a,b) and neéz(a) := arg min U(a,b)
be[n]\{a} be[n]\{a,me1(a)}

Then, the estimator T is the diagonal matrix defined by

f‘aa = (Xa - X’r’ﬁzl(a)vXa - XTTE2(¢1)>



Corrected relaxed K-means
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Corrected relaxed K-means (Bunea et al.('16))

Solve the SDP

Be argmin( —X7X,B),

BeC

with

C =

BERan:

eB =0

e > . By =1W
eB,, >0, Va,b
e Tr(B) =K

Similarly, one may define a corrected spectral clustering.
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Corrected relaxed K-means (Bunea et al.('16))

Solve the SDP

Be argmin(f‘ -xTX,B),

BeC
with
eB =0
. nxn . .2 Bab:]wa
C=\BERTT S B >0, va,b
e Tr(B) =K

Similarly, one may define a corrected spectral clustering.



Partial Recovery bounds
m subGaussian Mixtures
m Stochastic Block Models
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Partial recovery bounds

Proportion of misclustered points

K
P 1 =
, * . G* ANG ‘
67’7’(6 G ) - wIeI]‘IS‘I}( n ];21 ‘ k (k)

Our goal

Prove that with high-probability, when s is large

o~ 2
prop. misclustered = err(G,G*) < e”¢°

2

where s“ is an appropriate SNR.

Other related goals :

m partial recovery : Find the minimal s2 such that err(@, G*) is smaller than
random guess whp.

= Perfect recovery : Find the minimal s2 such that err(G, G*) = 0 whp.
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Clustering subGaussian mixtures

Mixture of subGaussian variables

X1,...,Xn € RP are independent with
m E[X,] =y if a € G},
(] 2;1/2Xa is SubGauss(L?1,) where 2, = cov(X,)

We set

2|2
A? = mi —ull?, o* =17 b d Ry = ety
g,r;glluk will®s o max|Bglop and Ry m,gx‘zk@p,

and define the SNR
o A% mAt

2= A2
02 Rxot’

where m denotes the size of the smallest cluster.
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Toy Examples

Simplification : K =2, |G}| =|G* | =n/2, X1 =3_1 = azlp, U1 = —p1.

Simplified Model 1 : 4 is known. Bayes Classifier achieves :

~ A2
Elerr(G,G")] = 2BIN(0,02) > [|ual]] < 2exp [—@]

Simplified Model 2 : 1y is sampled uniformly on the sphere of radius A/2.
Labels Z, € {—1,1} for a =1,...,n are known.

Objective : classify a new observation X.
Optimal Classifier : h(z) = sign ((% P ZaXa,x))
2
® achieves the rate e—¢A%/0 if A >1veE
o n

2
m achieves the rate e—cA"/(o") jf 1 v JESA <1vE
n o n

See Ndaoud('18) for proper lower bounds.
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Partial recovery bounds

9 A2 mA?
== A ——,
02  Rsot

Theorem ( )

If s2 > n/m (+ mild assumption), then P [err(a, G*) > e‘csz] < 7712
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Partial recovery bounds

9 A2 mA?
== A ——,
02  Rsot

Theorem ( )

If s2 > n/m (+ mild assumption), then P [err(a, G*) > e‘csz] < 7712

52 2 n/m is equivalent to A? > g2 2 (1 Vy/ RT’:) = 0’K <1 Y R”Z )

Remarks :

s2 reduces to A2/02 when A2/02 > Rs;/m
Fei and Chen ('18) , See Lu and Zhou ('16), Ndaoud('18) for sharp constants
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Partial recovery bounds

9 A2 mA?
== A ——,
02  Rsot

Theorem ( )

If s2 > n/m (+ mild assumption), then P [err(a, G*) > e‘csz] < 7712

52 2 n/m is equivalent to A? > g2 2 (1 Vy/ RT’:) = 0’K <1 Y R”Z )

Remarks :

s2 reduces to A2/02 when A2/02 > Rs;/m
Fei and Chen ('18) , See Lu and Zhou ('16), Ndaoud('18) for sharp constants

perfect recovery for s2 > log(n) V (n/m) = log(n)V K
Dependency in K is suboptimal.
Vempala and Wang('04) ~ s2 2> log(n) V 1/K log(n) when n > p3.

. . 17
Do not cover the case where the proportion of error is > e~ ¢ X
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Benefit of Corrected K-means

szuopﬁ(zk) < n

Mild price for T' estimation : ] S e
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Benefit of Corrected K-means

szuopﬁ(zk) < n
I=,0%  ~ log(n)

Mild price for I" estimation :

Without correction, additional assumption is required :

A2 > maxI'y — minT',
~ m

For a balanced Partition, it amounts to

AZ > 2K (1 v Ry \ maxk tr[Xg] — ming tr[Xg]
n n
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Proof Ideas

Simple Versions : All ||p; — p1]|2 are equal
Step 1: |B — B*|; small implies that err(G, G) is small.

New Objective : Show that (XTX — T',B* — B) > 0 as long as |B* — B|; is not
small
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Proof Ideas

Simple Versions : All ||p; — p1]|2 are equal
Step 1: |B — B*|; small implies that err(G, G) is small.

New Objective : Show that (XTX — T',B* — B) > 0 as long as |B* — B|; is not
small

(XTX-T,B*-B) = (Aupu"AT B*-B)+ (ETE-T,B* —B)
+({I - T,B* - B) + (AuE” + ExAT,B* — B)

We focus on the two first terms

Signal Term : (A" AT, B* — B) = 1A2B* — B*B|;

24/31



Control of the quadratic term : (ETE — T, B* — B)

B* is projection operator that averages over element of the same group.
~+ Decomposition of ETE — T' by applying B* or (I — B*).
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Control of the quadratic term : (ETE — T, B* — B)
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B* is projection operator that averages over element of the same group.
~+ Decomposition of ETE — T' by applying B* or (I — B*).

Step 3 : Control of the Projection Along Im(B*)

(1-B)ETE-T)I-B"),B"~B) < [ETE-T|o|I-B")B*-B|I-B").

1 * *
~ |IE"E ~ oy -[B" ~ B'BJ,

~+ Concentration of ETE in operator norm



Control of the quadratic term : (ETE — T, B* — B)

B* is projection operator that averages over element of the same group.
~+ Decomposition of ETE — T' by applying B* or (I — B*).

Step 3 : Control of the Projection Along Im(B*)
(I-B")ETE-T)I-B*),B*~B) < [E'E-Tlo(I-B*)[B*-B|I-B")].

1 * *
~ |IE"E ~ oy -[B" ~ B'BJ,

~+ Concentration of ETE in operator norm

Step 4 : Control of (B*(ETE —T'), B* — B).
A First try : (A, B) < |A||BJ1 does not lead to exponential bounds.

A Second try (Fei and Chen('17)) : (A,B) < 2212\11 Ay, where Ay > Ay > ...
Control of the order statistics B*(ETE — I') by Hanson-Wright inequality + Union
bound

25/31



Model 2 : graph clustering
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(conditional) SBM

Assume that the graph is generated by a SBM with Q;; = probability of connection
between nodes of groups j and k.
Let X = adjacency matrix of the graph € {0,1}"*".

For a € G, : Xa = [QAJk:. — Qrrea + Eq, where E, = X, — E[Xq]

A? = min [[QAx: — [QAJ:[* = m x min[|Qx. = Qs:lI* (2 2mAmin(Q)%)



Partial recovery for SBM

L2>1Qllop V1/m

Theorem ( )

We set s2 = A2/L. If s2 > n/m we have Plerr(G, G) > 6*652] <1/n?
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Partial recovery for SBM

L2>1Qllop V1/m

Theorem ( )

We set s2 = A2/L. If s2 > n/m we have Plerr(G, G) > 6*652] <1/n?
if we have enforced ||B||op < %364"1’.
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Comments

Assortative case : Q = (p — ¢)I + q117 and m = n/K

s? = 2m(p — q)*/p for p > K/n.
tight constants in Gao et al.('17), Yun and Proutiére('14)
perfect recovery for
(p—a)? . K?V Klog(n)

~

V4 n

Matches Best known polynomial time algorithm condition Chen and Xu('16)
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Comments (General Q)

Exponential decay :
Abbe and Sandon('15) consider the scaling Q = Qg log(n)/n for a fixed K. Results
not completely comparable.

Perfect recovery : if ||Q|lop = O(min; ; Q;x), we recover (up to constant) the
optimal condition of Abbe and Sandon('15)
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Exponential decay :
Abbe and Sandon('15) consider the scaling Q = Qg log(n)/n for a fixed K. Results
not completely comparable.

Perfect recovery : if ||Q|lop = O(min; ; Q;x), we recover (up to constant) the

optimal condition of Abbe and Sandon('15)

Other SDP for SBM : Relaxed K-means differs from Chen & Xu('16), Hajek et
al.("16), Guédon & Vershynin('16), Perry & Wein ('16)...

B = arg max(X, B)
Bec’

for assortative graphs (diag(Q)> nondiag(Q) )



Same arguments, but :
m spectral control requires trimming arguments in the proof
m control of quadratic terms quite messy due to the symmetry of X (peeling,
conditionning, ...)
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Summary

Main message

A corrected convex relaxation of K-means achieves some rate-optimal performances in
various settings including (conditional) mixture of sub-Gaussian and (conditional)
Stochastic Block Model.

Only tuning Parameter is K

F. Bunea, C. Giraud, M. Royer, N. V. PECOK : a convex optimization approach to
variable clustering. Annals of Statistics. ArXiv:1606.05100

C. Giraud and N.V. Partial recovery bounds for clustering with the relaxed
K-means. Mathematical Statistics and Learning ArXiv:1807.07547
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Merci pour votre attention |
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