

Thèse en poche Les conférences santé de la BU

CURCUMA ET CURCUMINE, DE L'HISTOIRE AUX INTERETS THERAPEUTIQUES.

Mercredi 15 mars 2017

Dr. Jean-Pierre JOURDAN

2016 - 2017

ATER Chimie Thérapeutique

UFR Pharmacie Amiens – Equipe THERA du LG2A

UMR-CNRS 6219

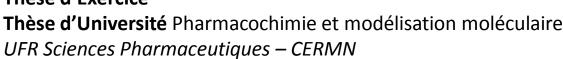
2003 - 2010

Études de Pharmacie, Faculté de Pharmacie, Marseille (13)

2010 - 2015

Internat de Pharmacie, DES IPR + année recherche UFR Sciences Pharmaceutiques — CHU de CAEN

Année hospitalière Pharmacie à Usage Intérieur *EHB (Bayeux) – CHU de CAEN*



CHUCgen

Master 2R Chimie Organique Faculté de Sciences

Thèse d'Exercice

2015 - 2016

Interne « Médaille d'or », PUI CHU de CAEN

Diplôme Universitaire médicoéconomie, UFR Pharmacie Paris-Descartes

Mémoire du diplôme d'études spécialisées innovation pharmaceutique et recherche : Thèse pour le diplôme d'Etat de Docteur en Pharmacie

CURCUMA ET CURCUMINE, DE L'HISTOIRE AUX INTERETS THERAPEUTIQUES.

Président : Pr Patrick DALLEMAGNE (Directeur de Thèse)
Membres : Pr Christophe ROCHAIS (Maître de Thèse)

Dr Véronique LELONG-BOULOUARD

Dr Cécile BREUIL

Jean-Pierre JOURDAN

Doctorat de l'Université de Caen Normandie

Conception, Synthèse et Evaluation Biologique de Nouveaux Analogues de la Curcumine, Potentiels Agents Pléiotropes d'Intérêt Thérapeutique dans la Maladie d'Alzheimer.

Membres du jury:

Pr. Patrick Dallemagne (Directeur de thèse)

Pr. Christophe Rochais (Codirecteur de thèse)

Pr. Ahcène Boumendjel (Rapporteur)

Pr. Pierre Verhaeghe (Rapporteur)

Pr. Olivier Duval (Examinateur)

Pr. Patrice Vanelle (Examinateur)

4000

av JC

XIIIème s

XV^{ème} s

1737

1810

2012

premiers récits ancestraux

commerce Chine-Inde *journal de bord de Marco Polo* Europe-Inde *commerçants Arabes*

utilisation en mélange : curry (colons Anglais)

description de Linné → genre *Curcuma*

culture agricole à des fins industrielles

Inde: premier producteur mondial 1 400 000 tonnes¹

Description

<u>H</u>: 60 – 100 cm

<u>Tige</u>: courte

Feuilles: longues, lames elliptiques, engainantes Fleurs: en épi, 10 – 15 cm, pédonculées, vertes

puis violettes

<u>Partie exploitée</u>:

rhizome

Curcuma longa L.

Matière première et transformations

Rhizome primaire et doigts :

- brun jaunâtre extérieur
- jaune orangé intérieur
- couleur : curcuminoïdes
- odeur aromatique
- goût chaud / amer
- récoltés 7 à 8 mois après la plantation

Broyage

pulvérulente

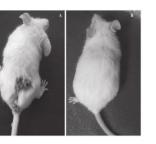
> Extraction

huile essentielle

Forme pulvérulente

La plus consommée Art culinaire : épice

Industrie: teintures textiles



Huile essentielle

Diabète de type 2 Prévention papillomavirus Répélent moustique

Élémène: Spondylarthrite Ankylosante

Turmérone: Antifongique

En association

Avec d'autres épices :

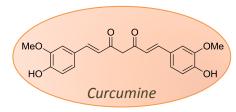
En cuisine : curry

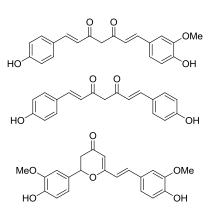
Élevage intensif : limite l'utilisation d'antibiotiques

Avec Betel: prévention cancer induit par les nitrosamines

(1S,2S,4R)-1-méthyl-2,4-di(prop-1-en-2-yl)-1-vinylcyclohexane

Elémène


(S)-6-(2-hydroxy-4-méthylphenyl)-2méthylhept-2-en-4-one


Turmérone

Composant majoritaire: amidon

Composants chimiques: Dérivés terpéniques

Curcuminoïdes

Curcuminoïdes

Histoire découverte - synthèse

1815

1918

1949

1970

1973

1980

1998

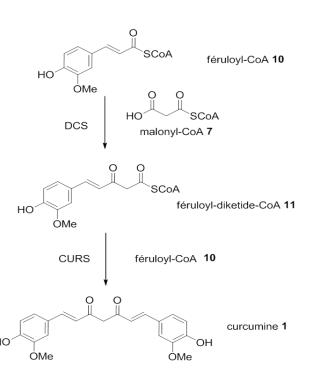
2015

Vogel et Pelletier « curcumine » : matière jaune du curcuma ¹

1910 Milobedzka et Lampe : diféruloylméthane ²

Lampe: première synthèse chimique ³

Schraufstatter et Bernt : antiinfectieux ⁴


Intérêts scientifiques (antioxydante et antiinflammatoire)

Roughley et Whiting: intérêt biosynthèse 5

Découverte de ses propriétés anticancéreuses

FDA: curcumine classée GRAS

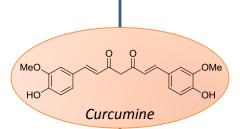
Intérêt oncologie, neuropsychiatrie ⁶

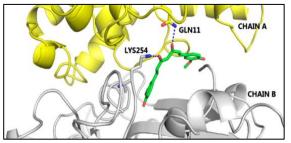
¹ Vogel; Pelletier. *Journal de Pharmacie et des Sciences Accessoires* **1815**, 289–300.

² Milobedzka, J.; Kostanecki, S. v.; Lampe, V. Zur Kenntnis Des Curcumins. Berichte der deutschen chemischen Gesellschaft **1910**, 43, 2164–2168.

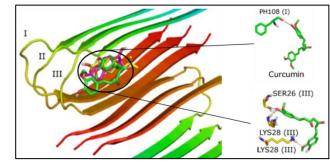
³ Lampe, V. Synthese von Curcumin. Berichte der deutschen chemischen Gesellschaft **1918**, *51*, 1347–1355.

⁴ Schraufstatter, E.; Bernt, H. Antibacterial Action of Curcumin and Related Compounds. *Nature* **1949**, *164*, 456–457.

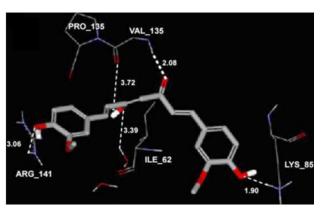

⁵ Roughley, P. J.; Whiting, D. A. Experiments in the Biosynthesis of Curcumin. Journal of the Chemical Society, Perkin Transaction 1 1973, 2379–2388.


⁶ Esatbeyoglu, T. et al. Angewandte Chemie - International Edition **2012**, 51 (22), 5308–5332.

Propriétés physico-chimiques


Interactions Intermoléculaires

Equilibre céto-énolique
 → liaisons Hydrogène ^{1,2,3}



Curcumine et tubuline 1

Curcumine et peptide β -amyloïde ²

Curcumine et GSK-3β³

¹ Li, J. et al. Toxicology and Applied Pharmacology **2012**, 265 (2), 190–199.

² Ngo, S. T. et al. Journal of medicinal chemistry **2012**, *116*, 10165–10175.

³ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry **2009**, 24 (3), 771–778.

⁴ Kolev, T. M. et al. International Journal of Quantum Chemistry **2005**, 102, 1069–1079.

⁵ Borsari, M. *et al. Inorganica Chimica acta* **2002**, *328*, 61–68.

⁶ Dinkova-kostova, A. T. et al. Proceedings of the National Academy of Sciences of the United States of America **2000**, *98* (6), 3404–3409.

⁷ Sun, Y. et al. Biophysical Journal **2008**, 95 (5), 2318–2324.

⁸ Baell, J. et al. Nature **2014**, 513, 481–483.

MeO

Curcumine

Propriétés physico-chimiques

Interactions Intermoléculaires

Equilibre céto-énolique

b,s-trans,s-trans,a conformère le plus stable

b,s-trans,s-trans,a conformère le moins stable

¹ Li, J. et al. Toxicology and Applied Pharmacology **2012**, 265 (2), 190–199.

² Ngo, S. T. et al. Journal of medicinal chemistry **2012**, *116*, 10165–10175.

³ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry 2009, 24 (3), 771–778.

⁴ Kolev, T. M. et al. International Journal of Quantum Chemistry **2005**, 102, 1069–1079.

⁵ Borsari, M. et al. Inorganica Chimica acta **2002**, 328, 61–68.

⁶ Dinkova-kostova, A. T. et al. Proceedings of the National Academy of Sciences of the United States of America 2000, 98 (6), 3404-3409.

⁷ Sun, Y. et al. Biophysical Journal **2008**, 95 (5), 2318–2324.

⁸ Baell, J. et al. Nature **2014**, 513, 481–483.

Propriétés physico-chimiques

Interactions Intermoléculaires

- Equilibre céto-énolique
 - → liaisons Hydrogène ^{1,2,3}

- Chélation de cations métalliques 5 2. Fe, Cu, Zn, Al, Mg, Se, ...
- Accepteur de Michael 6 3.

MeO Curcumine

¹ Li, J. et al. Toxicology and Applied Pharmacology **2012**, 265 (2), 190–199.

² Ngo, S. T. et al. Journal of medicinal chemistry **2012**, *116*, 10165–10175.

³ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry 2009, 24 (3), 771–778.

⁴ Kolev, T. M. et al. International Journal of Quantum Chemistry **2005**, 102, 1069–1079.

⁵ Borsari, M. et al. Inorganica Chimica acta **2002**, 328, 61–68.

⁶ Dinkova-kostova, A. T. et al. Proceedings of the National Academy of Sciences of the United States of America 2000, 98 (6), 3404-3409.

⁷ Sun, Y. et al. Biophysical Journal **2008**, 95 (5), 2318–2324.

⁸ Baell, J. et al. Nature **2014**, 513, 481–483.

Curcumine

Propriétés physico-chimiques

Interactions Intermoléculaires

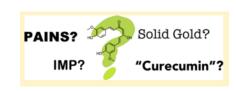
Equilibre céto-énolique
 → liaisons Hydrogène ^{1,2,3}

- 2. Chélation de cations métalliques ⁵
 - Fe, Cu, Zn, Al, Mg, Se, ...
- 3. Accepteur de Michael ⁶

Lipophilie

Solubilité (0,03 μ M) et Log P (2,3 – 2,6)

- → Interactions / biomembranes ⁷
- → PAINS 8,9
- ¹ Li, J. et al. Toxicology and Applied Pharmacology **2012**, 265 (2), 190–199.
- ² Ngo, S. T. et al. Journal of medicinal chemistry **2012**, *116*, 10165–10175.
- ³ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry **2009**, 24 (3), 771–778.
- ⁴ Kolev, T. M. et al. International Journal of Quantum Chemistry **2005**, 102, 1069–1079.
- ⁵ Borsari, M. et al. Inorganica Chimica acta **2002**, 328, 61–68.


Controverses: Pan Assay Interference Compound 8,9

Chemical con artists foil drug discovery

Naivety about promiscuous, assay-duping molecules is polluting the literature and wasting resources, warn Jonathan Baell and Michael A. Walters. Baell et al. (2010): composés pouvant être présentés comme des points de départ potentiels pour une exploration plus poussée, alors qu'ils ne possèdent pas d'activité intrinsèque.

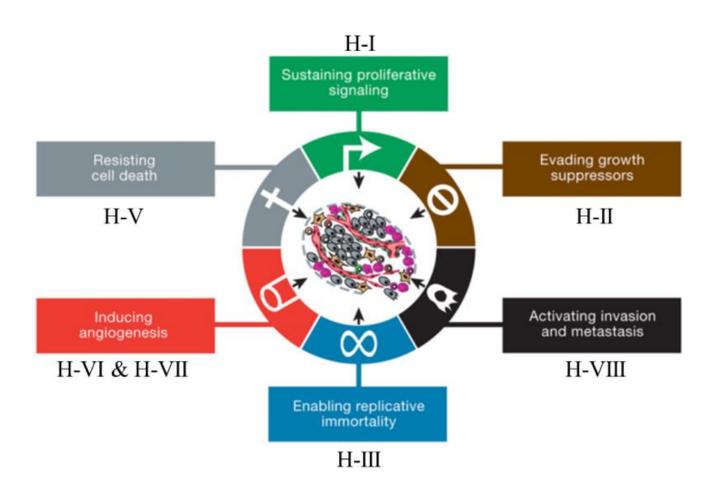
Nelson *et al.* (2017)¹⁰ : revue dédiée à la curcumine en tant que PAINS et IMPS (invalide metabolic panaceas).

Padmanaban *et al.* (*fév. 2017*)¹¹ répond par publication interposée : EC rand. PAR, BPCO, Infectiologie ...

"While a cautionary approach is welcome, summary dismissal of an entire area of research is like throwing the baby out with bathwater."

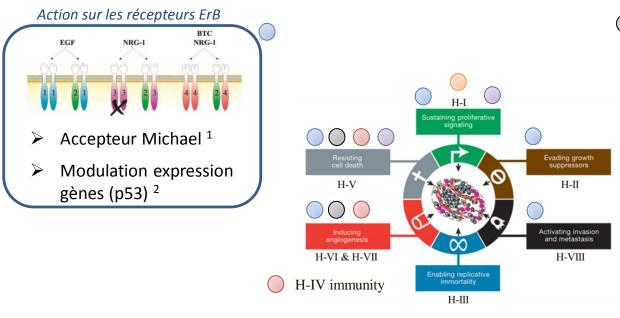
⁶ Dinkova-kostova, A. T. et al. Proceedings of the National Academy of Sciences of the United States of America **2000**, 98 (6), 3404–3409.

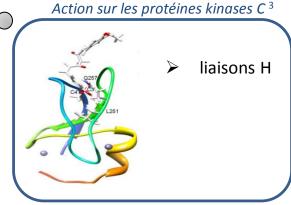
⁷ Sun, Y. et al. Biophysical Journal **2008**, 95 (5), 2318–2324.


⁸ Baell, J. et al. Journal of Medicinal Chemistry **2010**, 53, 2719-2740.

⁹ Baell, J. et al. Nature **2014**, 513, 481-483.

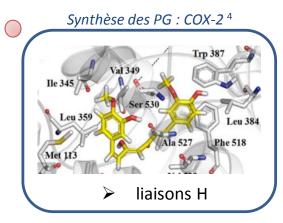
¹⁰ Nelson, K. M. *et al. Journal of Medicinal Chemistry* **2017**, *60*, 1620-1637.


¹¹ Padmanaban, G.; Nagaraj, V. A. Journal of Medicinal Chemistry **2017**, 8, 274.


Propriétés anticancéreuses

Caractéristiques des processus tumoraux 1

Propriétés anticancéreuses



Fixo

Fixation à l'ADN 6

- liaisons H
- fixation dans le petit sillon de la double hélice
- altération miRNA : degré condensation

Récepteurs Vitamine D⁵

 $^{^{1}}$ Jung, Y. et al. Biochimica et biophysica acta **2007**, 1773, 383–390.

²Lee, J. et al. Cancer Letters **2010**, 290 (1), 76–86.

³ Majhi, A. et al. Bioorganic Medicinal Chemistry **2011**, *18* (4), 1591–1598.

⁴ Maldonado-Rojas, W. et al. Journal of Molecular Graphics and Modelling **2011**, 30, 157–166.

⁵ Bartik, L. et al. Journal of Nutrition Biochemistry **2011**, 21 (12), 1153–1161.

⁶ Koonammackal, M .V. et al. Journal of Molecular Modeling **2011**, 17 (11), 2805–2816.

➤ La maladie d'Alzheimer

Neurodégénérative, progressive et irréversible

- déficit cognitif multiple des « 4 A » : apraxie, agnosie, aphasie, amnésie
- ➤ 44 millions de patients dans le monde atteints en 2014 (× 3 en 2050)

Physiopathologie

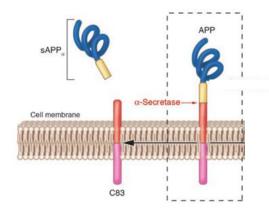
Plan

- Physiopathologie due à des dys-agrégations protéiques :
 - \triangleright Plaques séniles : peptide A β
 - Dégénérescences neurofibrillaires : protéine Tau hyperphosphorylée

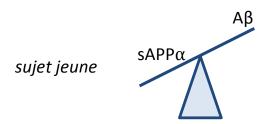
Plaques séniles

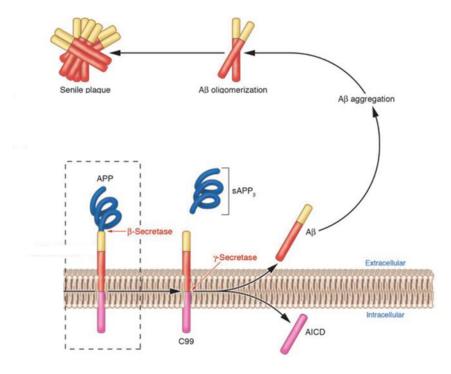
Aloïs Alzheimer 1906 ¹

Dégénérescences neurofibrillaires

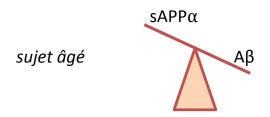

- Contexte de toxicité cellulaire neuroinflammatoire : cations métalliques et stress oxydant
 - Atteint préférentiellement les voies cholinergiques

La maladie d'Alzheimer : anomalies moléculaires


- Hypothèse de la cascade amyloïde
- Protéine précurseur de l'amyloïde : APP 1

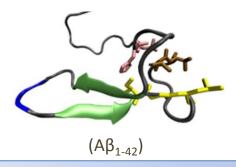

Plan

deux modes de clivage possible en parallèle

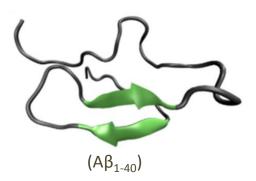


- voie non amyloïdogénique (sAPPα)
 - action α-sécrétases
 - neuroprotecteur
 - > neurotrophique

- \triangleright voie amyloïdogénique ($A\beta_{1-42}$)/($A\beta_{1-40}$)
 - action β- et γ-sécrétases

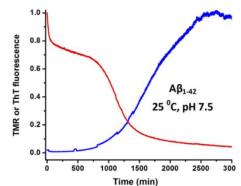


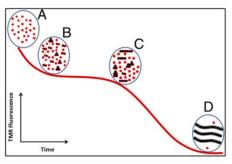
- > Pathologie Alzheimer : accumulation
 - agrégation
 - plaques séniles

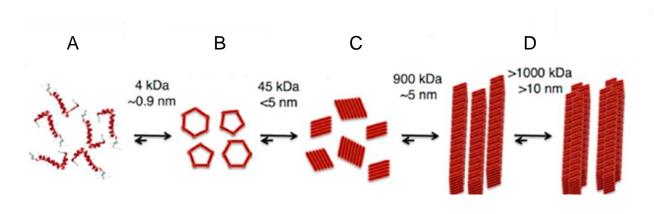

- > Hypothèse de la cascade amyloïde
- Protéine précurseur de l'amyloïde : APP 1

Plan

- voie non amyloïdogénique (sAPP∝)
- \triangleright voie amyloïdogénique (A β_{1-42})/(A β_{1-40})
- Aβ₁₋₄₂: tendance accrue à l'agrégation ²




- > plus stable
- > tendance accrue à l'agrégation 2



Hypothèse de la cascade amyloïde

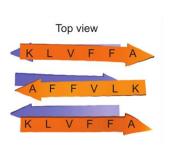
- Protéine précurseur de l'amyloïde : APP 1
 - voie non amyloïdogénique (sAPP∝)
 - \triangleright voie amyloïdogénique (A β_{1-42})/(A β_{1-40})
- \triangleright Aβ₁₋₄₂: tendance accrue à l'agrégation ²
- Cinétique d'agrégation ³
 - plateau : oligomères 4
 - ➤ fibrillation ³
 - formation des plaques séniles 5

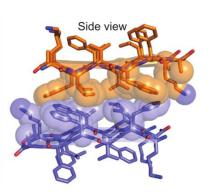
¹ Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129.

² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

³ Garai, K.; Frieden, C. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (9), 3321–3326.

⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.


⁵ Rijal Upadhaya, A. *et al. Brain* **2014**, *137* (3), 887–903.


Hypothèse de la cascade amyloïde

- Protéine précurseur de l'amyloïde : APP 1
 - voie non amyloïdogénique (sAPP∝)
 - \triangleright voie amyloïdogénique (A β_{1-42})/(A β_{1-40})
- \triangleright Aβ₁₋₄₂: tendance accrue à l'agrégation ²
- ➤ Cinétique d'agrégation ³

Plan

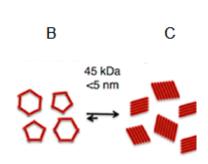
- plateau : oligomères 4
- ▶ fibrillation ³
- > formation des plaques séniles 5
- > séquence impliquée : 16KLVFFA²¹

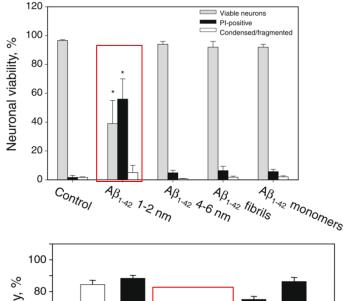
¹ Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129...

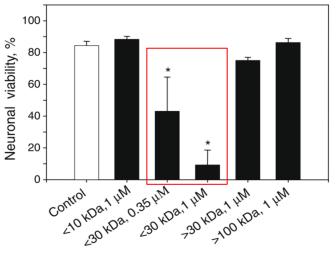
² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

³ Garai, K.; Frieden, C. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (9), 3321–3326.

⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.


⁵ Rijal Upadhaya, A. *et al. Brain* **2014**, *137* (3), 887–903.


Hypothèse de la cascade amyloïde


- Protéine précurseur de l'amyloïde : APP 1
 - voie non amyloïdogénique (sAPP∝)
 - \triangleright voie amyloïdogénique (A β_{1-42})/(A β_{1-40})
- \triangleright Aβ₁₋₄₂: tendance accrue à l'agrégation ²
- Cinétique d'agrégation ³
 - plateau : oligomères 4
 - ► fibrillation ³
 - ➢ formation des plaques séniles ⁵
 - > séquence impliquée : 16KLVFF²⁰
- Toxicité

Plan

▶ formes oligomériques ⁶: 1 - 2 nm; 10 - 30 kDa

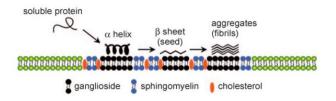
 $^{^1}$ Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129...

² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

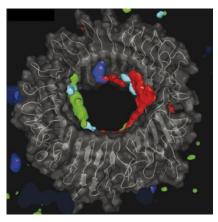
³ Garai, K.; Frieden, C. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (9), 3321–3326.

⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.

⁵ Rijal Upadhaya, A. *et al. Brain* **2014**, *137* (3), 887–903.


⁶ Cizas, P. et al. Archives of Biochemistry and Biophysics **2010**, 496 (2), 84–92.

Hypothèse de la cascade amyloïde


- Protéine précurseur de l'amyloïde : APP 1
 - voie non amyloïdogénique (sAPP∝)
 - \triangleright voie amyloïdogénique $(A\beta_{1-42})/(A\beta_{1-40})$
- \triangleright Aβ₁₋₄₂: tendance accrue à l'agrégation ²
- Cinétique d'agrégation ³
 - plateau : oligomères 4
 - ► fibrillation ³
 - formation des plaques séniles 5
 - > séquence impliquée : 16KLVFF²⁰
- Toxicité

Plan

- ➢ formes oligomériques ⁶: 1 2 nm; 10 30 kDa
- accumulation à la surface membranaire (radeaux lipidiques) 7
- ➤ formation de pores membranaires ⁸

radeaux lipidiques 7

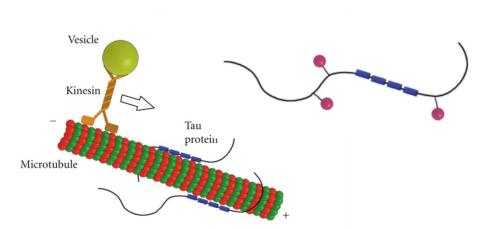
pores membranaires 8

¹Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129...

² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

³ Garai, K.; Frieden, C. *Proceedings of the National Academy of Sciences of the United States of America* **2013**, *110* (9), 3321–3326.

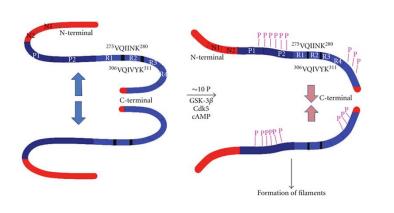
⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.

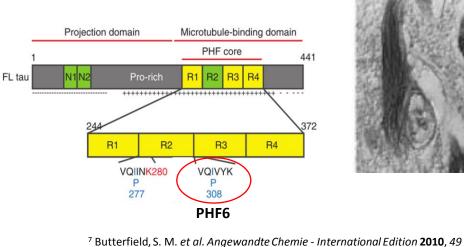

⁵ Rijal Upadhaya, A. et al. Brain **2014**, 137 (3), 887–903.

⁶ Cizas, P. et al. Archives of Biochemistry and Biophysics **2010**, 496 (2), 84–92.

⁸ Jang, H. et al. Trends in Biochemical Sciences **2008**, 33 (2), 91–100.

Hypothèse de la cascade amyloïde


Plan



- Pathologie de la protéine Tau
- Protéine Tau ⁹
 - associée aux microtubules (MAP)
 - maintien structural neurones
- Hyperphosphorylation

⁸ Jang, H. et al. Trends in Biochemical Sciences 2008, 33 (2), 91–100. ⁹Shammas, S. L. et al. Nature Communications **2015**, 6, 1–10.

- ➤ GSK-3β
- repliement et agrégation
- Séguence incriminée ¹⁰: ³⁰⁶VQIVYK³¹¹ = PHF6

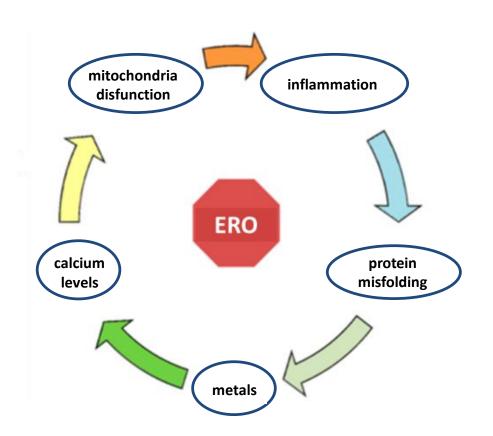
(33), 5628–5654.

⁶ Cizas, P. et al. Archives of Biochemistry and Biophysics **2010**, 496 (2), 84–92.

¹Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129...

² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

³ Garai, K.; Frieden, C. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (9), 3321-3326.


⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.

⁵ Rijal Upadhaya, A. et al. Brain **2014**, 137 (3), 887–903.

¹⁰ Kolarova, M. et al. International Journal of Alzheimer's Disease **2012**, 1–13.

Hypothèse de la cascade amyloïde

Plan

- Pathologie de la protéine Tau
- Protéine Tau ⁹
 - associée au microtubules (MAP)
 - maintien structural neurones
- Hyperphosphorylation
 - GSK-3B
 - repliement et agrégation
- Séquence incriminée ¹⁰: ³⁰⁶VQIVYK³¹¹ = PHF6
 - Contexte de toxicité cellulaire neuroinflammatoire
 - favorise la dys-agrégation

¹Gandy, S. The Journal of Clinical Investigation **2005**, 115 (5), 1121–1129...

² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

³ Garai, K.; Frieden, C. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (9), 3321-3326.

⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.

⁵ Rijal Upadhaya, A. et al. Brain **2014**, 137 (3), 887–903.

⁶ Cizas, P. et al. Archives of Biochemistry and Biophysics **2010**, 496 (2), 84–92.

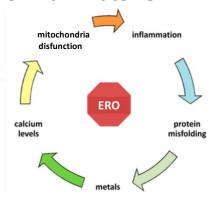
⁷ Butterfield, S. M. et al. Angewandte Chemie - International Edition **2010**, 49 (33), 5628–5654.

⁸ Jang, H. et al. Trends in Biochemical Sciences 2008, 33 (2), 91–100.

⁹ Shammas, S. L. et al. Nature Communications **2015**, 6, 1–10.

¹⁰ Kolarova, M. et al. International Journal of Alzheimer's Disease **2012**, 1–13.

- Hypothèse de la cascade amyloïde
- Protéine précurseur de l'amyloïde : APP 1
 - voie non amyloïdogénique (sAPP∝)
 - \triangleright voie amyloïdogénique $(A\beta_{1-42})/(A\beta_{1-40})$
- Aβ₁₋₄₂: tendance accrue à l'agrégation ²
- Cinétique d'agrégation ³
 - plateau : oligomères 4
 - ➤ fibrillation ³
 - ➢ formation des plaques séniles ⁵
 - > séquence impliquée : 16KLVFF20
- Toxicité


Plan

- > formes oligomériques ⁶: 1 2 nm; 10 30 kDa
- accumulation à la surface membranaire (radeaux lipidiques) 7
- ➤ formation de pores membranaires ⁸

dégénérescence neuronale irréversible

- Pathologie de la protéine Tau
- Protéine Tau ⁹
 - associée au microtubules (MAP)
 - maintien structural neurones
- Hyperphosphorylation
 - \triangleright GSK-3 β
 - repliement et agrégation
- ➤ Séquence incriminée ¹⁰ : ³⁰⁶VQIVYK³¹¹ = PHF6
 - Contexte de toxicité cellulaire neuroinflammatoire

¹ Gandy, S. The Journal of Clinical Investigation 2005, 115 (5), 1121–1129...

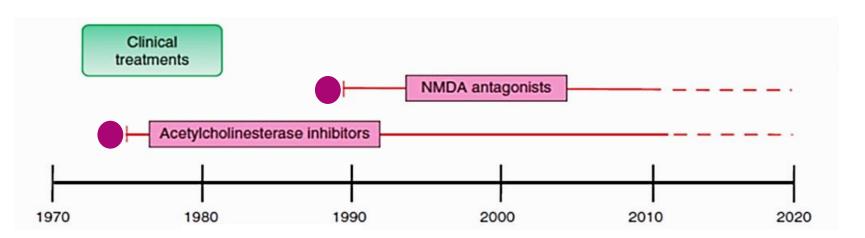
² Ball, K. A. et al. Biophysical Journal **2013**, 104 (12), 2714–2724.

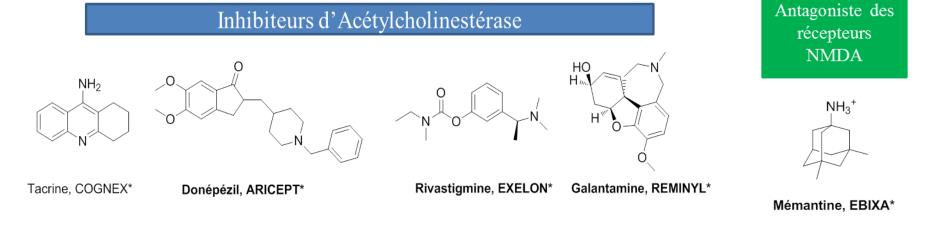
³ Garai, K.; Frieden, C. *Proceedings of the National Academy of Sciences of the United States of America* **2013**, *110* (9), 3321–3326.

⁴ Carulla, N. et al. Accounts of Chemical Research **2010**, 43 (8), 1072–1079.

⁵ Rijal Upadhaya, A. et al. Brain **2014**, 137 (3), 887–903.

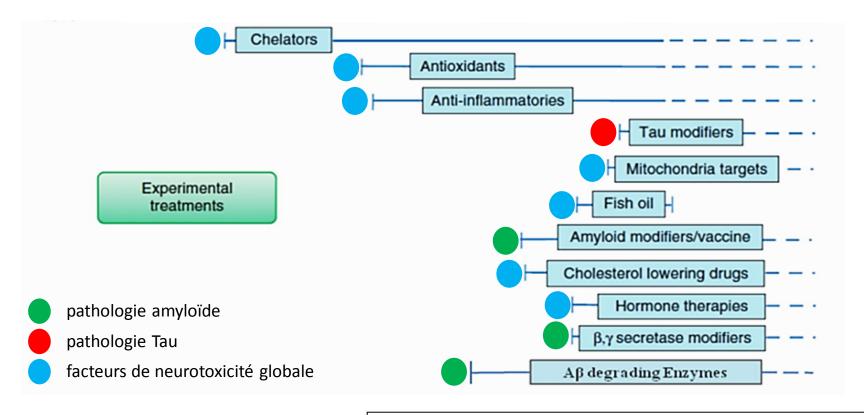
Rijai Opadnaya, A. et al. Brain 2014, 137 (3), 887–903.
 Cizas, P. et al. Archives of Biochemistry and Biophysics 2010, 496 (2), 84–92.


⁷ Butterfield, S. M. *et al.* Angewandte Chemie - International Edition **2010**, 49 (33), 5628–5654.


⁸ Jang, H. et al. Trends in Biochemical Sciences 2008, 33 (2), 91–100.

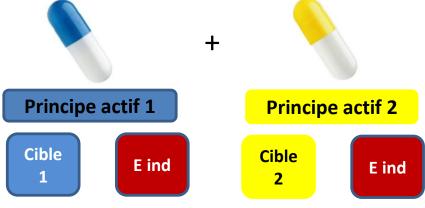
⁹ Shammas, S. L. et al. Nature Communications **2015**, 6, 1–10.

 $^{^{10}}$ Kolarova, M. et al. International Journal of Alzheimer's Disease 2012, 1–13.


➤ La maladie d'Alzheimer : traitements et innovations thérapeutiques ¹

AMM

- ➤ La maladie d'Alzheimer : traitements et innovations thérapeutiques ¹
 - Maladie présentant des anomalies moléculaires complexes
 - Les traitements expérimentaux sont nombreux


- > Echecs des essais cliniques
- > Insuffisance d'efficacité clinique

Why Pleiotropic Interventions are Needed for Alzheimer's Disease

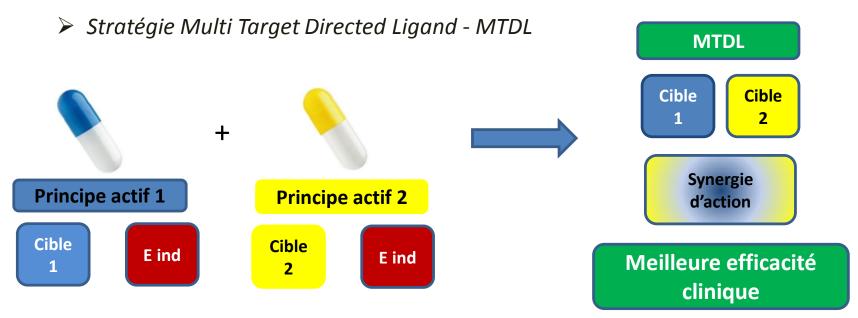
Sally A. Frautschy · Greg M. Cole

- La maladie d'Alzheimer : traitements et innovations thérapeutiques 1
 - > Association de principes actifs : cocktails médicamenteux

- engendre un défaut d'observance
- augmente le risque iatrogène

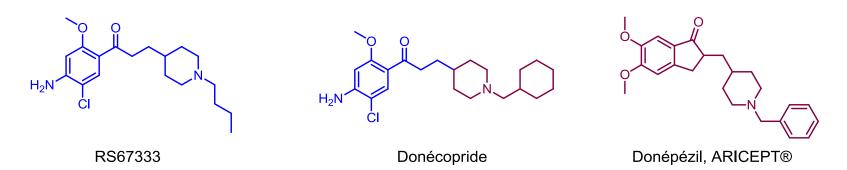
- Formulation galénique unique
 - > améliore l'observance
 - > ne diminue pas le risque iatrogène

Hypertension artérielle

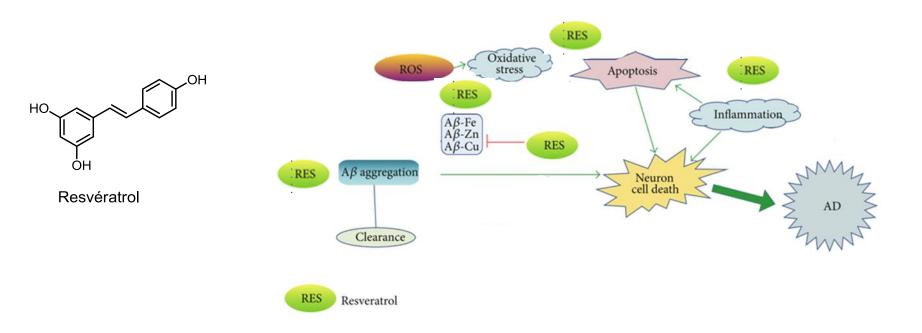


> Infectiologie VIH

➤ La maladie d'Alzheimer : traitements et innovations thérapeutiques ¹


Exemple disposant d'une AMM

crizotinib, XALKORI®


- ➤ La maladie d'Alzheimer : traitements et innovations thérapeutiques ¹
 - Stratégie Multi Target Directed Ligand MTDL
 - > MTDLs de synthèse
 - ➤ Ladostigil: inhibiteur dual AChE et MAO-A et B¹ (essais cliniques phase II)

Donécopride : ligand dual agoniste partiel 5-HT₄R et inhibiteur AChE ²

¹Weinreb, O. et al. Current Drug Targets **2012**, 13 (4), 483–494.

- La maladie d'Alzheimer : traitements et innovations thérapeutiques 1
 - Stratégie Multi Target Directed Ligand MTDL
 - Produits naturels pléiotropes ^{1,2}

 $^{^1}$ Bieschke, J. et al. Proceedings of the National Academy of Sciences of the United States of America **2010**, 107 (17), 7710–7715.

² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750.

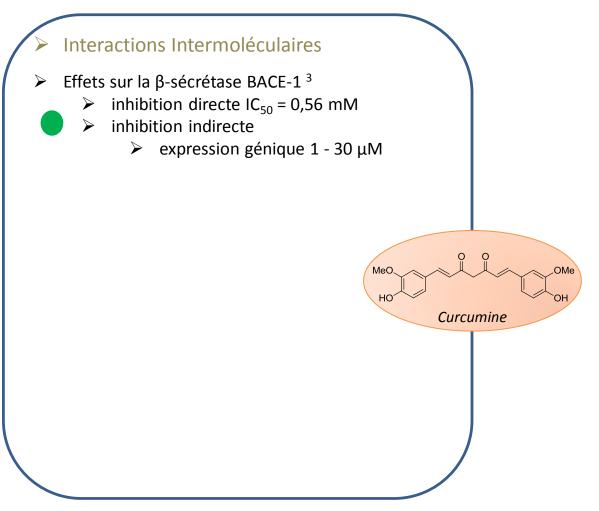
- La maladie d'Alzheimer : traitements et innovations thérapeutiques 1
 - Stratégie Multi Target Directed Ligand MTDL
 - ➤ Produits naturels pléiotropes ^{1,2}

Curcumine

Curcuma longa L.

Rhizomes

Curcuma


¹ Bieschke, J. et al. Proceedings of the National Academy of Sciences of the United States of America **2010**, 107 (17), 7710–7715.

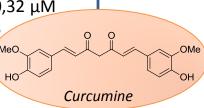
² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750.

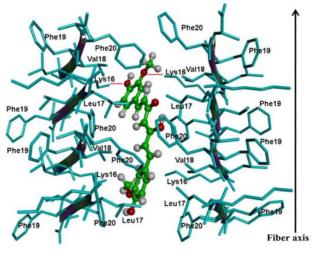
> propriétés pléiotropes de la curcumine d'intérêt dans le traitement de la MA

pathologie amyloïde

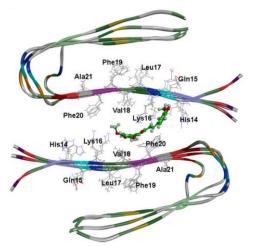
études in vitro et in vivo

¹ Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750..


² Rao, P. P. N. et al. Chemical Biology & Drug Design **2015**, doi: 10.1111/cbdd.12552.


> propriétés pléiotropes de la curcumine d'intérêt dans le traitement de la MA

pathologie amyloïde



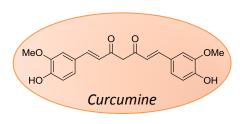
- Interactions Intermoléculaires
- Effets sur la β-sécrétase BACE-1 ¹
 - \rightarrow inhibition directe IC₅₀ = 0,56 mM
- inhibition indirecte
 - expression génique 1 -30 μM
- Effets sur la cascade amyloïde
 - \triangleright inhibition agrégation EC₅₀ = 0,63 μ M ²
 - \triangleright déstabilisation des fibrilles EC₅₀ = 0,32 μ M
 - pas de cristallisation des feuillets β
 - ➢ docking ³

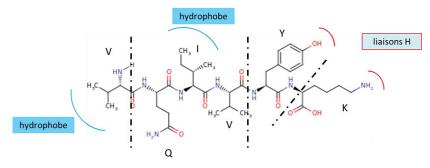
Curcumine dockée dans un octamère hexapeptidique ¹⁶KLVFFA²¹

Curcumine dockée dans un octamère de peptide entier $A\beta_{1-40}$

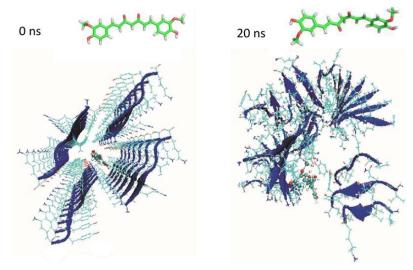
¹ Murata, K. et al. Journal of Natural Medicines **2014**, 69 (1), 123–129.

² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750..


³ Rao, P. P. N. et al. Chemical Biology & Drug Design **2015**, doi: 10.1111/cbdd.12552.


> propriétés pléiotropes de la curcumine d'intérêt dans le traitement de la MA

études in vitro et in vivo


- Interactions Intermoléculaires
- Effets sur la β-sécrétase BACE-1¹
 - \rightarrow inhibition directe IC₅₀ = 0,56 mM
 - inhibition indirecte
 - expression génique 1 -30 μM
- Effets sur la cascade amyloïde
 - \triangleright inhibition agrégation EC₅₀ = 0,63 μM ²
 - \triangleright déstabilisation des fibrilles EC₅₀ = 0,32 μM
 - \triangleright pas de cristallisation des feuillets β
 - docking ³
- Effets sur la protéine Tau
 - > inhibition directe de l'agrégation 4
 - docking et dynamique moléculaire

pathologie Tau

Sites d'interaction curcumine – hexapeptide ³⁰⁶VQIVYK³¹¹

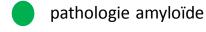
Dynamique moléculaire de la désagrégation de fibres constituées de ³⁰⁶VQIVYK³¹¹ par la curcumine

pathologie amyloïde

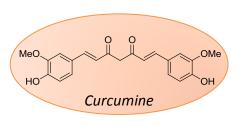
¹ Murata, K. et al. Journal of Natural Medicines **2014**, 69 (1), 123–129.

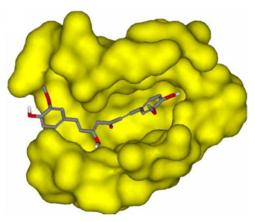
² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750..

³ Rao, P. P. N. et al. Chemical Biology & Drug Design **2015**, doi: 10.1111/cbdd.12552.


⁴ Berhanu, W. et al. Journal of Biomolecular Structure and Dynamics 2014.

propriétés pléiotropes de la curcumine d'intérêt dans le traitement de la MA


études in vitro et in vivo



- Effets sur la β-sécrétase BACE-1 ¹
 - \rightarrow inhibition directe IC₅₀ = 0,56 mM
- inhibition indirecte
 - expression génique 1 -30 μM
- Effets sur la cascade amyloïde
 - \triangleright inhibition agrégation EC₅₀ = 0,63 μM ²
 - \triangleright déstabilisation des fibrilles EC₅₀ = 0,32 μ M
 - \triangleright pas de cristallisation des feuillets β
 - docking ³
- Effets sur la protéine Tau
 - > inhibition directe de l'agrégation 4
 - docking et dynamique moléculaire
 - inhibition directe de l'hyperphosphorylation
 - action sur GSK-3β⁵
 - fixation site ATP

Docking de la curcumine dans le site catalytique de GSK-3eta

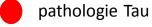
¹ Murata, K. et al. Journal of Natural Medicines **2014**, 69 (1), 123–129.

² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750..

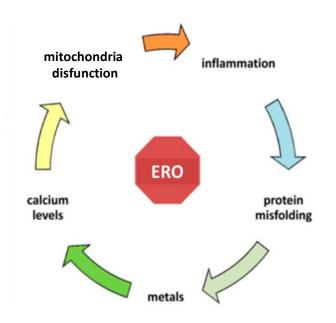
³ Rao, P. P. N. et al. Chemical Biology & Drug Design **2015**, doi: 10.1111/cbdd.12552.

⁴ Berhanu, W. et al. Journal of Biomolecular Structure and Dynamics **2014.**

⁵ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry **2009**, 24 (3), 771–778


propriétés pléiotropes de la curcumine d'intérêt dans le traitement de la MA

études in vitro et in vivo


- Effets sur la β-sécrétase BACE-1 ¹
 - \rightarrow inhibition directe IC₅₀ = 0,56 mM
- inhibition indirecte
 - expression génique 1 -30 μM
- > Effets sur la cascade amyloïde
 - \triangleright inhibition agrégation EC₅₀ = 0,63 μM ²
 - \triangleright déstabilisation des fibrilles EC₅₀ = 0,32 μM
 - \triangleright pas de cristallisation des feuillets β
 - ➢ docking ³
- Effets sur la protéine Tau
 - > inhibition directe de l'agrégation 4
 - docking et dynamique moléculaire
 - inhibition directe de l'hyperphosphorylation
 - action sur GSK-3β⁵
 - fixation site ATP
 - Actions sur l'environnement neuronal 6

pathologie amyloïde

facteurs de neurotoxicité globale

- Antioxydant
- Anti radicaux-libres
 - Chélatante de métaux

Curcumine

¹ Murata, K. et al. Journal of Natural Medicines **2014**, 69 (1), 123–129.

² Ono, K. et al. Journal of Neuroscience Research **2004**, 75 (6), 742–750..

³ Rao, P. P. N. et al. Chemical Biology & Drug Design 2015, doi: 10.1111/cbdd.12552.

⁴ Berhanu, W. et al. Journal of Biomolecular Structure and Dynamics **2014.**

⁵ Bustanji, Y. et al. Journal of Enzyme Inhibition and Medicinal Chemistry **2009**, 24 (3), 771–778

Biodisponibilité et utilisations

Plan

Absorption

➤ Shoba et al. : études chez le rat et l'Homme ¹

$$ho$$
 C_{max} = 0,006 ± 0,005 µg.mL⁻¹

$$ightharpoonup$$
 T_{max} = 1 h

comparaison avec le lorazépam²

$$ho$$
 C_{max} = 0,025 µg.mL⁻¹

Distribution

- peu de données
- distribution très faible au niveau périphérique et SNC

Métabolisme

- fort métabolisme hépatique
- très rapidement et efficacement conjuguée : phase 2
- réductions : phase 1
- inactivation

\triangleright Elimination et $t_{1/2}$ ³

- pas de données chez l'Homme
- \rightarrow t_{1/2} chez le rat est de 1,7 \pm 0,5 h.

> Stabilité 4

- nombreuses voies de dégradations (solvolyse, photosensibilité, oxydation)
- perte d'activité
- problèmes de conservation

¹ Shoba, G. et al. Planta Medica **1998**, 64, 353–356.

² Greenblatt, D. J. et al. Journal of pharmaceutical sciences 1982, 71 (2), 248–252.

³Anand, P. et al. Molecular Pharmaceutics 2007, 4 (6), 807–818.

⁴ Heger, M. et al. Pharmacological Reviews **2014**, 66 (1), 222–307.

Curcumine

37

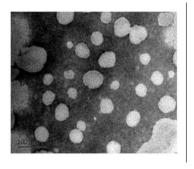
Biodisponibilité et solutions proposées

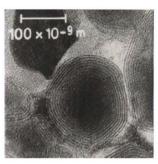
Co-administration d'adjuvants

- pipérine extraite de poivre noir
 - inhibiteur de la glucuronoconjugaison hépatique
 - 2 g de curcumine + 20 mg de pipérine BD × 2000 %
 - distribution dans le SNC + 48 % ¹
- quercétine
 - > puissant antioxydant
 - > curcumine 480 mg + quercétine 20 mg
 - > polypose adénopathique familiale ²
- Epigallocatechin-3-gallate
 - > extrait du thé vert
 - ► leiomyosarcome utérin ³

quercétine

Epigallocatechin-3-gallate


 $^{^1}$ Ryu, E. K. et al. Journal of Medicinal Chemistry **2006**, 49 (20), 6111–6119.


² Cruz-Correa, M. et al. Clinical Gastroenterology and Hepatology **2006**, 4 (8), 1035–1038.

Plan Curcuma Curcumine Intérêts Théra. Chez l'Homme Conclusion

Biodisponibilité et solutions proposées

- Formulations galéniques et vectorisation
 - nano émulsions mucoadhésives 1
 - distribution directe au SNC : voie intra-nasale
 - diminution de la clairance mucocilliaire
 - perméation plus importante avec ce système

CS: Curcumine seule

CNE: nanoE de curcumine

CMNE: nanoE Mucoadhésives

¹Sood, S.; Jain, K. et al. Colloids and Surfaces B: Biointerfaces **2014**, 113, 330–337.

² Khanji, A. N. *et al. Food and FunctionFunction* **2015**, doi: 10.1039/C5FO00829H.

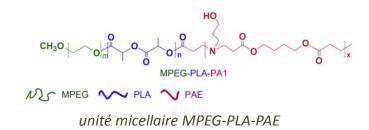
³ Yu, Y. et al. Biomaterials **2014**, 35 (10), 3467–3479.

Biodisponibilité et solutions proposées

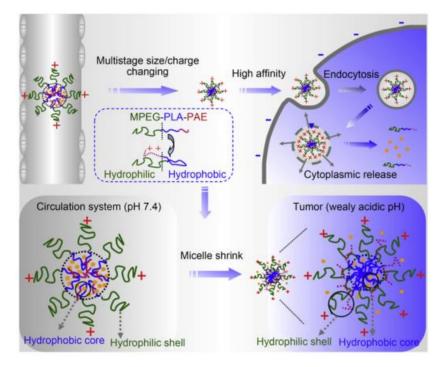
Plan

- Formulations galéniques et vectorisation
 - nano emulsions mucohadédhésives ¹
 - > distribution directe au SNC : voie intra-nasale
 - diminution de la clairance mucocilliaire
 - > perméation plus importante avec ce système
 - > micelles de caséines gélifiantes ²
 - > gélification en milieu acide
 - > forme gastrorésistante pour relargage dudodénal
 - > compatibilité du système avec la curcumine

¹ Sood, S.; Jain, K. et al. Colloids and Surfaces B: Biointerfaces **2014**, 113, 330–337.


² Khanji, A. N. *et al. Food and Function* **2015**, doi: 10.1039/C5FO00829H.

³ Yu, Y. et al. Biomaterials **2014**, 35 (10), 3467–3479.


Biodisponibilité et solutions proposées

Plan

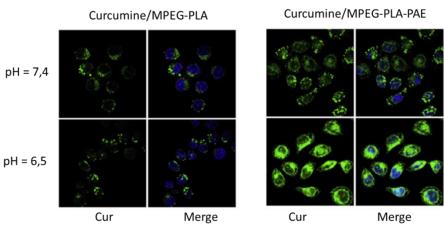
- Formulations galéniques et vectorisation
- nano emulsions mucohadédhésives ¹
 - distribution directe au SNC : voie intra-nasale
 - diminution de la clairance mucocilliaire
 - perméation plus importante avec ce système

- micelles de caséines gélifiantes 2
 - gélification en milieu acide
 - forme gastrorésistante pour relargage dudodénal
 - compatibilité du système avec la curcumine
- procédé innovant de relargage ³
 - unité micellaire triphasique innovante
 - partie polyaminoester est « contractile »
 - > évaluations in vitro et in vivo.

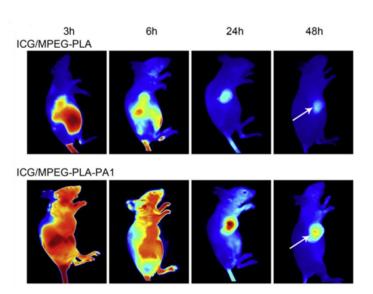
Système de contraction en milieu acide

¹Sood, S.; Jain, K. et al. Colloids and Surfaces B: Biointerfaces **2014**, 113, 330–337.

 $^{^2}$ Khanji, A. N. et al. Food and Function **2015**, doi : 10.1039/C5FO00829H.


³ Yu, Y. et al. Biomaterials **2014**, 35 (10), 3467–3479.

Curcuma Curcumine Intérêts Théra. Chez l'Homme Conclusion


Biodisponibilité et solutions proposées

Plan

- Formulations galéniques et vectorisation
 - nano emulsions mucohadédhésives ¹
 - distribution directe au SNC : voie intra-nasale
 - diminution de la clairance mucocilliaire
 - perméation plus importante avec ce système
 - ➢ micelles de caséines gélifiantes ²
 - > gélification en milieu acide
 - > forme gastrorésistante pour relargage dudodénal
 - > compatibilité du système avec la curcumine
 - procédé innovant de relargage ³
 - > unité micellaire triphasique innovante
 - > partie polyaminoester est « contractile »
 - évaluations in vitro et in vivo.

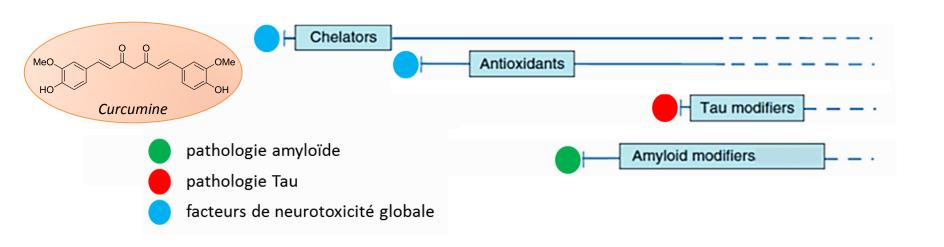
Essais in vitro sur cellules HT-29

Essais in vivo sur des souris porteuses de tumeurs

¹ Sood, S.; Jain, K. et al. Colloids and Surfaces B: Biointerfaces **2014**, 113, 330–337.

² Khanji, A. N. *et al. Food and FunctionFunction* **2015**, doi : 10.1039/C5FO00829H.

³ Yu, Y. et al. Biomaterials **2014**, 35 (10), 3467–3479.

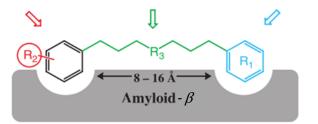

- Autres moyens : conception d'analogues de la curcumine : enjeux
 - conserver ses propriétés intéressantes

Plan

s'affranchir des problèmes liés à sa stabilité/drugabilité

Conception, Synthèse et Evaluation Biologique de Nouveaux Analogues de la Curcumine, Potentiels Agents Pléiotropes d'Intérêt Thérapeutique dans la Maladie d'Alzheimer.

Genèse du projet et RSA de la Curcumine


Propriétés des polyphénols

Plan

Disposition des noyaux aromatiques satisfaisant aux règles de fixation au peptide $A\beta^1$

R₂: groupement hydroxyle est nécessaire pour l'inhibition R₃ : taille et flexibilité du linker – longueur du linker comprise entre 8 Å et 16 Å ; maximum de 2 liaisons de rotation libre C-C

R₁: un deuxième groupement phényle est requis pour l'activité

Conception de nouveaux analogues basée sur les RSA de la Curcumine

$$\mathbb{R}^2$$
 \mathbb{R}^1

$$\Rightarrow$$
 \mathbb{R}^2 OH

Acides β -aminoarylpropioniques ²

¹Reinke, A. A.; Gestwicki, J. E. *Chem. Biol. Drug. Des.* **2007**, *70*, 206-215.

² Rochais, C.; Rault, S.; Dallemagne, P. Curr. Med. Chem. **2010**, *17* (*35*), 4342-4369.

Curcuma

Curcumine

Intérêts Théra.

Chez l'Homme

Recherche

Synthèse en Série Phénylbenzylidènepyrrolizinone - PBP

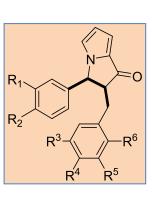
> Accès rétrosynthétique

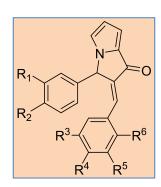
pnenyibenzyiidenepyrrolizinones

 \Longrightarrow

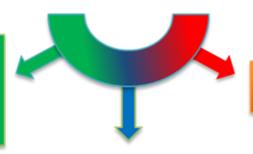
$$R^1$$
 OH R^2

acide β-vanillinoaminopropionique R^1 = OMe R^2 = OH acide β-isovanillinoaminopropionique R^1 = OH R^2 = OMe


série isovanilline et vanilline


> Noyau hétérocyclique pyrrolizinone

synthèse pyrrolique


$$R^1$$
 H R^2 IV .

> Synthèse de 22 composés

ACTIVITE NEUROPROTECTRICE
Inhibition de l'agrégation β-amyloïde
Pouvoir complexant métaux
Activité anti-radicaux libres
Protection des lipides membranaires

SECURITE D'EMPLOI Profil de cytotoxicité

DRUGABILITE Solubilité & Log P Perméabilité membranaire BHE & BGI Stabilité en solution

> Evaluation de l'effet neuroprotecteur des PBPs

Inhibition directe de l'agrégation A $eta_{ ext{1-42}}$

Plan

Interactions avec les métaux

Activités antioxydantes

radical DPP

peroxydation lipidique

radical NO

$$R_1$$
 R_2
 R^3
 R^4
 R^5

Compd	Inhibit° of Aβ ₁₋₄₂	DPPH test	NO scavenging	Lipid	Cu ²⁺ complex activity	
	aggreg° (%) [10	IC ₅₀ [μM] n	activity (%)	peroxidation	Stoichiometry	Kd
	μM] n = 1,	= 3	[40µM] n = 3	(%) after 2 h	(X:Cu ²⁺)	
	triplicate			[40μM] n = 3		
Curcumin	68.9 ± 4.9	19.2 ± 3.3	60.4 ± 4.2	-		
Trolox	-	18.2 ± 1.6	-	-		
Ferulic acid	-	43.2 ± 3.3	46.4 ± 3.9	47.0 ± 1.7		
Quercetin	-	-	70.7 ± 4.5	-		
24	28.7 ± 3.3	12.6 ± 1.6	65.6 ± 2.2	57.0 ± 2.5	1:1	2.2

> Evaluation de l'effet neuroprotecteur des PBPs

Inhibition directe de l'agrégation A $eta_{ ext{1-42}}$

Plan

Interactions avec les métaux

Activités antioxydantes

radical DPP·

peroxydation lipidique

radical NO

Evaluation de la drugabilité des molécules synthétisées

Solubilité

Perméabilité membranaire Log P et stabilité de certains produits

Log P

Stabilité

Cytotoxicité

Compd	Cytotoxicity Inhibition % at 10 ⁻⁵ M (KB cells) n = 3	-log Pe for PAMPA-BBB assay	-log Pe for PAMPA-GIT assay	Chemical stability at pH 7.4 : calculated half-life [hour]
Curcumin	83 ± 1	4.6 ± 0.0	4.3 ± 0.2	n a
1	0 ± 3	4.1 ± 0.0	3.9 ± 0.0	No degradation

Curcuma

Curcumine

Intérêts Théra.

Chez l'Homme

Recherche

2012 - 2015

Interne en Pharmacie DES IPR,

Thèse d'Université spécialité Pharmacochimie et Modélisation Moléculaire,

CERMN, UFR Sciences Pharmaceutiques, UCBN

Pr Patrick DALLEMAGNE et Pr Christophe ROCHAIS tel.: 02.31.56.68.13

4 communications par affiches internationales 1 primée (RICT 2016) / 3 communications orales

European Journal of Medicinal Chemistry 114 (2016) 365-379

Composés insaturés publiés en 2016 :

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Research paper

Novel benzylidenephenylpyrrolizinones with pleiotropic activities potentially useful in Alzheimer's disease treatment

Jean-Pierre Jourdan ^a, Marc Since ^a, Laïla El Kihel ^a, Cédric Lecoutey ^a, Sophie Corvaisier ^a, Rémi Legay ^a, Jana Sopkova-de Oliveira Santos ^a, Thierry Cresteil ^b, Aurélie Malzert-Fréon ^a, Christophe Rochais ^a, **, Patrick Dallemagne ^a, *

^a Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France

b CIBLOT, IPSIT - IFR14, 5 rue Jean Baptiste Clément, 92290 Chatenay-Malabry, France

2012 - 2015

Interne en Pharmacie DES IPR,

Thèse d'Université spécialité Pharmacochimie et Modélisation Moléculaire,

CERMN, UFR Sciences Pharmaceutiques, UCBN

Pr Patrick DALLEMAGNE et Pr Christophe ROCHAIS tel.: 02.31.56.68.13

4 communications par affiches internationales 1 primée (RICT 2016) / 3 communications orales

Composés saturés soumise 2017 :

ChemMedChem

Benzylphenylpyrrolizinones with anti-amyloid and scavenging effects, potentially useful in Alzheimer's disease treatment.

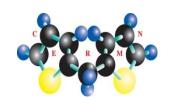
-- Manuscript Draft--

$$R_1$$
 R_2 R_3

benzylidenephenylpyrrolizinones with antioxidant and amyloid aggregation inhibition properties

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 $X = 0$
 $N-OH$

benzylidenephenylpyrrolizinones with enhanced properties


Rémi Legay Sophie Corvaisier Marc Since Aurélie Malzert-Fréon Laïla El Kihel Jana Sopkova de Oliveira Santos Faustine Siebert Agnès Guillaumin

CM34: Directeurs de thèse : Pr Patrick Dallemagne Pr Christophe Rochais

Dr Cédric Lecoutey Dr Julien Lalut

Thèse en poche Les conférences santé de la BU

CURCUMA ET CURCUMINE, DE L'HISTOIRE AUX INTERETS THERAPEUTIQUES.

Merci de votre attention...

Mercredi 15 mars 2017